A semi-automatic structure learning method for language modeling

Vitor Pera

September 11, 2019

Faculdade de Engenharia da Universidade do Porto (FEUP)

LCPM's Structure Learning Method

Preliminary Results

Conclusions

References

• Multiclass-dependent Ngram (M > N > 1)

$$P(\omega_t | \omega_{1:t-1}) = \sum_{c_t \in C(\omega_t)} P(\omega_t | c_t, \omega_{1:t-1}) P(c_t | \omega_{1:t-1})$$

$$\approx \sum_{c_t \in C(\omega_t)} P(\omega_t | c_t, \omega_{t-N+1:t-1}) P(c_t | c_{t-M+1:t-1})$$

• Multiclass-dependent Ngram (M > N > 1)

$$P(\omega_t | \omega_{1:t-1}) = \sum_{c_t \in C(\omega_t)} P(\omega_t | c_t, \omega_{1:t-1}) P(c_t | \omega_{1:t-1})$$

$$\approx \sum_{c_t \in C(\omega_t)} P(\omega_t | c_t, \omega_{t-N+1:t-1}) P(c_t | c_{t-M+1:t-1})$$

• LCPM (FLM formalism)

$$P(c_t|c_{t-M+1:t-1}) \xrightarrow{c \leftrightarrow f^{1:K}} P(f_t^{1:K}|f_{t-M+1:t-1}^{1:K})$$

• Multiclass-dependent Ngram (M > N > 1)

$$P(\omega_t | \omega_{1:t-1}) = \sum_{c_t \in C(\omega_t)} P(\omega_t | c_t, \omega_{1:t-1}) P(c_t | \omega_{1:t-1})$$

$$\approx \sum_{c_t \in C(\omega_t)} P(\omega_t | c_t, \omega_{t-N+1:t-1}) P(c_t | c_{t-M+1:t-1})$$

• LCPM (FLM formalism)

$$P(c_t|c_{t-M+1:t-1}) \xrightarrow{c \leftrightarrow f^{1:K}}$$

$$P(f_t^{1:K}|f_{t-M+1:t-1}^{1:K})$$

- LCPM structure learning (Goal)
 - accurate and simple
 - two steps method

LCPM's Structure Learning Method - Step 1: Intro

• Given

- The need for a LCPM to compute $P(f_t^{1:K}|f_{t-M+1:t-1}^{1:K})$ (factors not known, yet)
- Common knowledge on Linguistics
- Full knowledge of the specific language interface

LCPM's Structure Learning Method - Step 1: Intro

• Given

- The need for a LCPM to compute $P(f_t^{1:K}|f_{t-M+1:t-1}^{1:K})$ (factors not known, yet)
- Common knowledge on Linguistics
- Full knowledge of the specific language interface
- Solve (non-automatically)
 - Which linguistic features use?
 - Which linguistic features exhibit some special statistical independence property?

LCPM's Structure Learning Method - Step 1: Procedure

1. Choose the linguistic features ($\rightarrow f^{1:K}$)

- Informative to model $P(\omega_t | f_t^{1:K}, \omega_{t-N+1:t-1})$
- Adequate to data resources (annotation and robustness)

LCPM's Structure Learning Method - Step 1: Procedure

1. Choose the linguistic features $(\rightarrow f^{1:K})$

- Informative to model $P(\omega_t | f_t^{1:K}, \omega_{t-N+1:t-1})$
- Adequate to data resources (annotation and robustness)
- 2. Make the (credible) assumption:

 f_t^n is statistically independent of any other factors, given its own history, iff $1 \leq n \leq J$

(accordingly, split $f^{1:K} \rightarrow f^{1:J} + f^{J+1:K}$, $1 \leq J < K$)

LCPM's Structure Learning Method - Step 1: Procedure

1. Choose the linguistic features $(\rightarrow f^{1:K})$

- Informative to model $P(\omega_t | f_t^{1:K}, \omega_{t-N+1:t-1})$
- Adequate to data resources (annotation and robustness)
- 2. Make the (credible) assumption:

 f_t^n is statistically independent of any other factors, given its own history, iff $1 \leq n \leq J$

(accordingly, split $f^{1:K} \rightarrow f^{1:J} + f^{J+1:K}$, $1 \le J < K$)

LCPM factorization

$$\left[\prod_{i=1}^{J} P(f_t^i | f_{t-M+1:t-1}^i)\right] \underbrace{P(f_t^{J+1:K} | f_t^{1:J}, f_{t-M+1:t-1}^{1:K})}_{\text{Step 2}}$$

LCPM's Structure Learning Method - Step 1: Example

Given some application and a corpus annotated by multiple tags

- ${\bf 1.}$ Admit the following tags are judged as the most appropriate:
 - Part-of-speech (POS)
 - Semantic tag (ST)
 - Gender inflection (GI)

LCPM's Structure Learning Method - Step 1: Example

Given some application and a corpus annotated by multiple tags

- ${\bf 1.}$ Admit the following tags are judged as the most appropriate:
 - Part-of-speech (POS)
 - Semantic tag (ST)
 - Gender inflection (GI)
- **2.** Assuming that from these three LFs only ST can be predicted based uniquely on its own history:

•
$$ST \to f^1$$

• (POS,GI) $\rightarrow f^{2:3}$

Given some application and a corpus annotated by multiple tags

- $\ensuremath{\mathbf{1}}.$ Admit the following tags are judged as the most appropriate:
 - Part-of-speech (POS)
 - Semantic tag (ST)
 - Gender inflection (GI)
- 2. Assuming that from these three LFs only ST can be predicted based uniquely on its own history:
 - $ST \to f^1$
 - (POS,GI) $\rightarrow f^{2:3}$

Results the LCPM approximation:

$$P(f_t^{1:3}|f_{t-M+1:t-1}^{1:3}) \approx P(f_t^1|f_{t-M+1:t-1}^1) P(f_t^{2:3}|f_t^1, f_{t-M+1:t-1}^{1:3})$$

LCPM's Structure Learning Method - Step 2: Intro

• Goal is to learn the structure of statistical model to compute $P(f_t^{J+1:K}|f_t^{1:J}, f_{t-M+1:t-1}^{1:K})$, more precisely ...

LCPM's Structure Learning Method - Step 2: Intro

- Goal is to learn the structure of statistical model to compute $P(f_t^{J+1:K}|f_t^{1:J},f_{t-M+1:t-1}^{1:K}),$ more precisely ...
- Determine automatically $Z \subset f_{t-M+1:t-1}^{1:K}$ such that
 - |Z| is fixed and $|Z| << |f_{t-M+1:t-1}^{1:K}|$ (robustness constraint)
 - and $P(f_t^{J+1:K}|f_t^{1:J},Z)$ approximates the original conditional probabilities according to Information Theory based criteria

LCPM's Structure Learning Method - Step 2: Intro

- Goal is to learn the structure of statistical model to compute $P(f_t^{J+1:K}|f_t^{1:J},f_{t-M+1:t-1}^{1:K}),$ more precisely ...
- Determine automatically $Z \subset f_{t-M+1:t-1}^{1:K}$ such that
 - |Z| is fixed and $|Z| << |f_{t-M+1:t-1}^{1:K}|$ (robustness constraint)
 - and $P(f_t^{J+1:K}|f_t^{1:J},Z)$ approximates the original conditional probabilities according to Information Theory based criteria

Notation simplification (hereafter):

$$X = f_t^{1:J}; \quad Y = f_t^{J+1:K}; \quad Z \subset W = f_{t-M+1:t-1}^{1:K}; \to P(Y|X,Z)$$

LCPM's SL Method - Step 2: Rules to determine Z

- Information Theory measures
 - Conditional entropy, H(Y|X)
 - Conditional mutual information (CMI), I(Y;Z|X)
 - Cross-context conditional mutual information (CCCMI), $I_{X_l}(Y; Z|X_m)$

LCPM's SL Method - Step 2: Rules to determine Z

- Information Theory measures
 - Conditional entropy, H(Y|X)
 - Conditional mutual information (CMI), I(Y;Z|X)
 - Cross-context conditional mutual information (CCCMI), $I_{X_l}(Y; Z | X_m)$
- Possible/experimented rules ($\rightarrow P(Y|X,Z) w/ Z \subset W$)
 - To discard Z*

If $I(Y; Z^*|X) < \eta H(Y|X)$ then Z^* is non-relevant

LCPM's SL Method - Step 2: Rules to determine Z

- Information Theory measures
 - Conditional entropy, ${\cal H}(Y|X)$
 - Conditional mutual information (CMI), I(Y;Z|X)
 - Cross-context conditional mutual information (CCCMI), $I_{X_l}(Y; Z | X_m)$
- Possible/experimented rules ($\rightarrow P(Y|X,Z) w/ Z \subset W$)
 - To discard Z^*

If $I(Y;Z^*|X) < \eta H(Y|X)$ then Z^* is non-relevant

• To determine Z^*

$$Z^* = \underset{\substack{Z \subset W \\ |Z| = \zeta}}{\operatorname{argmax}} \{ I(Y; Z | X) \}$$

LCPM's SL Method - Step 2: Rules to determine Z (cont.)

• Rule to determine Z^* using the "Utility" measure N_{λ}

$$Z^* = \underset{\substack{Z \subset W \\ |Z| = \zeta}}{\operatorname{argmax}} \{ N_{\lambda}(Y; Z|X) \}, \quad 0 < \lambda \le 1$$

LCPM's SL Method - Step 2: Rules to determine Z (cont.)

• Rule to determine Z^* using the "Utility" measure N_{λ}

$$Z^* = \underset{\substack{Z \subset W \\ |Z| = \zeta}}{\operatorname{argmax}} \{ N_{\lambda}(Y; Z|X) \}, \quad 0 < \lambda \le 1$$

where $N_{\lambda}(Y; Z|X)$ represents

$$\sum_{X_m} P(X_m) \Big[I(Y; Z | X_m) - \lambda \sum_{X_l \neq X_m} P(X_l) I_{X_l}(Y; Z | X_m) \Big]$$

LCPM's SL Method - Step 2: Rules to determine Z (cont.)

• Rule to determine Z^* using the "Utility" measure N_{λ}

$$Z^* = \underset{\substack{Z \subset W \\ |Z| = \zeta}}{\operatorname{argmax}} \{ N_{\lambda}(Y; Z|X) \}, \quad 0 < \lambda \le 1$$

where $N_{\lambda}(Y; Z|X)$ represents

$$\sum_{X_m} P(X_m) \Big[I(Y; Z | X_m) - \lambda \sum_{X_l \neq X_m} P(X_l) I_{X_l}(Y; Z | X_m) \Big]$$

and $I_{X_l}(Y; Z|X_m)$ represents

$$\sum_{Y} \sum_{Z} P(Y, Z|X_l) \log \frac{P(Y, Z|X_m)}{P(Y|X_m)P(Z|X_m)}$$

LCPM's SL Method - Step 2: Example

 $\begin{array}{ll} \mbox{Problem:} & \mbox{Choose } Z^1 \mbox{ or } Z^2 \mbox{ to model } P(Y|X,Z); \\ & X \in \{F,S\}, \ Y \in \{A,B,U\}, \ Z^1 \in \{C,D,V\}, \ Z^2 \in \{E,F,W\} \end{array}$

LCPM's SL Method - Step 2: Example

 $\begin{array}{ll} \mbox{Problem:} & \mbox{Choose } Z^1 \mbox{ or } Z^2 \mbox{ to model } P(Y|X,Z); \\ & X \in \{F,S\}, \ Y \in \{A,B,U\}, \ Z^1 \in \{C,D,V\}, \ Z^2 \in \{E,F,W\} \end{array}$

Data: P(X = F) = P(X = S)

LCPM's SL Method - Step 2: Example

 $\begin{array}{ll} \mbox{Problem:} & \mbox{Choose } Z^1 \mbox{ or } Z^2 \mbox{ to model } P(Y|X,Z); \\ & X \in \{F,S\}, \ Y \in \{A,B,U\}, \ Z^1 \in \{C,D,V\}, \ Z^2 \in \{E,F,W\} \end{array}$

Data: P(X = F) = P(X = S)

"Utility" & Solutions:

$$N_0(Y;Z^1|X) < N_0(Y;Z^2|X) \label{eq:nonlinear}$$
 (near equality)

$$\therefore \lambda = 0 \Rightarrow \text{choose } Z^2$$

 $N_1(Y; Z^1|X) > N_1(Y; Z^2|X)$ $\therefore \lambda = 1 \Rightarrow \text{choose } Z^1$

10/14

end

Sort
$$f_{t-M+1:t-1}^{1:K}$$
 by descending order of $N_{(\lambda)}(f_t^{J+1:K};z|f_t^{1:J})$ $Z \gets \emptyset$

repeat// factors redundancy

$$\begin{array}{|c|c|c|c|c|} z \leftarrow \text{next non-processed element in } f_{t-M+1:t-1}^{1:K} \\ \text{if } I(f_t^{J+1:K}; z | f_t^{1:J}) > \eta I(z; r | f_t^{1:J}), \forall r \in Z \text{ then} \\ & | \quad \text{Add } z \text{ to } Z \\ & \text{end} \\ \text{until } |Z| = \zeta \text{ or all elements of } f_{t-M+1:t-1}^{1:K} \text{ are processed} \\ \text{Output } Z \end{array}$$

Preliminary Results

 Text corpus (vocab-size≈ 200K) which annotations include: m - Part-of-speech (#13: ADJ, ADV, ...)

n - Number inflection (#3: S, P, U)

Select $Z \subset W = \{n_t, m_{t-1}, g_{t-1}, n_{t-1}, m_{t-2}, g_{t-2}, n_{t-2}, ...\}$ maximizing the *Utility*, $N_\lambda(g_t; Z | m_t) \quad (\to P(g_t | m_t, Z))$

Preliminary Results

• Text corpus (vocab-size $\approx 200K$) which annotations include: m - Part-of-speech (#13: ADJ, ADV, ...)

n - Number inflection (#3: S, P, U)

Select $Z \subset W = \{n_t, m_{t-1}, g_{t-1}, n_{t-1}, m_{t-2}, g_{t-2}, n_{t-2}, ...\}$ maximizing the *Utility*, $N_\lambda(g_t; Z|m_t) \quad (\to P(g_t|m_t, Z))$

Results

Cases	λ	Z sorted by decreasing N_λ
$g \neq N$ and $n \neq U$	0	$\{g_{t-1}, g_{t-2}, m_{t-1}, \dots\}$
	1	$\{g_{t-1}, m_{t-1}, g_{t-2}, \dots\}$
Whole data	0	$\{n_t, g_{t-1}, m_{t-1}, \dots\}$
	1	$\{g_{t-1}, n_{t-2}, g_{t-2}, \dots\}$

• Method for learning LCPM structure

- Method for learning LCPM structure
- Guidelines:

Seek accurate and simple structure (FLM approach: keep just the relevant and non-redundant factors and dependencies)

- Method for learning LCPM structure
- Guidelines:

Seek accurate and simple structure (FLM approach: keep just the relevant and non-redundant factors and dependencies)

• Process:

Step 1 - manually set initial structure (Linguistic knowledge)
Step 2 - automatically "prune" structure (data-driven algorithm based on Information Theory concepts)

- Method for learning LCPM structure
- Guidelines:

Seek accurate and simple structure (FLM approach: keep just the relevant and non-redundant factors and dependencies)

• Process:

Step 1 - manually set initial structure (Linguistic knowledge)
Step 2 - automatically "prune" structure (data-driven algorithm based on Information Theory concepts)

• Preliminary results seem promising; larger experiments are needed to get conclusive results

References

- J. Bilmes, "Natural Statistical Models for Automatic Speech Recognition", PhD Thesis, 1999, Berkley, Cal, Intl. Computer Science Institute.
- K. Kirchhoff, J. Bilmes, and K. Duh, "Factored Language Model Tutorial", Tech. Report, 2008, Dept. Electrical Engineering, Univ. of Washington.
- Helmut Schmid, "Improvements in Part-of-Speech Tagging with an Application to German", Proc. ACL SIGDAT-Workshop, 1995. Dublin, Ireland.
- D. Santos, and P. Rocha, "Evaluating CETEMPúblico, a free resource for Portuguese", Proc. 39th Annual Meeting of the Association for Computational Linguistics, 2001, Stroudsburg, PA, USA.