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Linguistic Classes Prediction Model (LCPM)

• Multiclass-dependent Ngram (M > N > 1)

P (ωt|ω1:t−1) =
∑

ct∈C(ωt)

P (ωt|ct, ω1:t−1)P (ct|ω1:t−1)

≈
∑

ct∈C(ωt)

P (ωt|ct, ωt−N+1:t−1)P (ct|ct−M+1:t−1)

• LCPM (FLM formalism)

P (ct|ct−M+1:t−1)
c↔ f1:K−−−−−→ P (f1:Kt |f1:Kt−M+1:t−1)

• LCPM structure learning (Goal)

• accurate and simple

• two steps method
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LCPM’s Structure Learning Method - Step 1: Intro

• Given

• The need for a LCPM to compute P (f1:Kt |f1:Kt−M+1:t−1)

(factors not known, yet)

• Common knowledge on Linguistics

• Full knowledge of the specific language interface

• Solve (non-automatically)

• Which linguistic features use?

• Which linguistic features exhibit some special statistical

independence property?
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LCPM’s Structure Learning Method - Step 1: Procedure

1. Choose the linguistic features (→ f1:K)

• Informative to model P (ωt|f1:Kt , ωt−N+1:t−1)

• Adequate to data resources (annotation and robustness)

2. Make the (credible) assumption:

fnt is statistically independent of any other factors, given its

own history, iff 1 ≤ n ≤ J

(accordingly, split f1:K → f1:J ++fJ+1:K , 1 ≤ J < K)

LCPM factorization[∏J
i=1 P (f

i
t |f it−M+1:t−1)

]
P (fJ+1:K

t |f1:Jt , f1:Kt−M+1:t−1)︸ ︷︷ ︸
Step 2
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LCPM’s Structure Learning Method - Step 1: Example

Given some application and a corpus annotated by multiple tags

1. Admit the following tags are judged as the most appropriate:

• Part-of-speech (POS)

• Semantic tag (ST)

• Gender inflection (GI)

2. Assuming that from these three LFs only ST can be predicted
based uniquely on its own history:

• ST → f1

• (POS,GI) → f2:3

Results the LCPM approximation:

P (f1:3t |f1:3t−M+1:t−1) ≈ P (f1t |f1t−M+1:t−1)P (f
2:3
t |f1t , f1:3t−M+1:t−1)
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LCPM’s Structure Learning Method - Step 2: Intro

• Goal is to learn the structure of statistical model to compute

P (fJ+1:K
t |f1:Jt , f1:Kt−M+1:t−1), more precisely ...

• Determine automatically Z ⊂ f1:Kt−M+1:t−1 such that

• |Z| is fixed and |Z| << |f1:Kt−M+1:t−1|
(robustness constraint)

• and P (fJ+1:K
t |f1:Jt , Z) approximates the original conditional

probabilities according to Information Theory based criteria

Notation simplification (hereafter):

X = f1:Jt ; Y = fJ+1:K
t ; Z ⊂W = f1:Kt−M+1:t−1; → P (Y |X,Z)
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LCPM’s SL Method - Step 2: Rules to determine Z

• Information Theory measures

• Conditional entropy, H(Y |X)

• Conditional mutual information (CMI), I(Y ;Z|X)

• Cross-context conditional mutual information (CCCMI),

IXl
(Y ;Z|Xm)

• Possible/experimented rules (→ P (Y |X,Z) w/ Z ⊂W )

• To discard Z∗

If I(Y ;Z∗|X) < ηH(Y |X) then Z∗ is non-relevant

• To determine Z∗

Z∗ = argmax
Z⊂W
|Z|=ζ

{I(Y ;Z|X)}
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LCPM’s SL Method - Step 2: Rules to determine Z (cont.)

• Rule to determine Z∗ using the “Utility” measure Nλ

Z∗ = argmax
Z⊂W
|Z|=ζ

{Nλ(Y ;Z|X)}, 0 < λ ≤ 1

where Nλ(Y ;Z|X) represents∑
Xm

P (Xm)
[
I(Y ;Z|Xm)−λ

∑
Xl 6=Xm

P (Xl)IXl
(Y ;Z|Xm)

]

and IXl
(Y ;Z|Xm) represents∑

Y

∑
Z

P (Y,Z|Xl) log
P (Y,Z|Xm)

P (Y |Xm)P (Z|Xm)

9/14



LCPM’s SL Method - Step 2: Rules to determine Z (cont.)

• Rule to determine Z∗ using the “Utility” measure Nλ

Z∗ = argmax
Z⊂W
|Z|=ζ

{Nλ(Y ;Z|X)}, 0 < λ ≤ 1

where Nλ(Y ;Z|X) represents∑
Xm

P (Xm)
[
I(Y ;Z|Xm)−λ

∑
Xl 6=Xm

P (Xl)IXl
(Y ;Z|Xm)

]

and IXl
(Y ;Z|Xm) represents∑

Y

∑
Z

P (Y,Z|Xl) log
P (Y,Z|Xm)

P (Y |Xm)P (Z|Xm)

9/14



LCPM’s SL Method - Step 2: Rules to determine Z (cont.)

• Rule to determine Z∗ using the “Utility” measure Nλ

Z∗ = argmax
Z⊂W
|Z|=ζ

{Nλ(Y ;Z|X)}, 0 < λ ≤ 1

where Nλ(Y ;Z|X) represents∑
Xm

P (Xm)
[
I(Y ;Z|Xm)−λ

∑
Xl 6=Xm

P (Xl)IXl
(Y ;Z|Xm)

]

and IXl
(Y ;Z|Xm) represents∑

Y

∑
Z

P (Y,Z|Xl) log
P (Y,Z|Xm)

P (Y |Xm)P (Z|Xm)

9/14



LCPM’s SL Method - Step 2: Example

Problem: Choose Z1 or Z2 to model P (Y |X,Z);
X ∈ {F, S}, Y ∈ {A,B,U}, Z1 ∈ {C,D, V }, Z2 ∈ {E,F,W}

Data: P (X = F ) = P (X = S) “Utility” & Solutions:

N0(Y ;Z1|X) < N0(Y ;Z2|X)

(near equality)

∴ λ = 0⇒ choose Z2

N1(Y ;Z1|X) > N1(Y ;Z2|X)

∴ λ = 1⇒ choose Z1
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LCPM’s SL Method - Step 2: ALgorithm to define Z

Input: f1:Kt−M+1:t, J , K, M , ζ, λ, γ, η, Data

Output: Set of factors: Z

for each z ∈ f1:Kt−M+1:t−1 do // factors relevance

if I(fJ+1:K
t ; z|f1:Jt ) < γH(fJ+1:K

t |f1:Jt ) then

Remove z from f1:Kt−M+1:t−1
end

end

Sort f1:Kt−M+1:t−1 by descending order of N(λ)(f
J+1:K
t ; z|f1:Jt )

Z ← ∅
repeat// factors redundancy

z ← next non-processed element in f1:Kt−M+1:t−1
if I(fJ+1:K

t ; z|f1:Jt ) > ηI(z; r|f1:Jt ), ∀r ∈ Z then

Add z to Z

end

until |Z| = ζ or all elements of f1:Kt−M+1:t−1 are processed

Output Z
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Preliminary Results

• Text corpus (vocab-size≈ 200K) which annotations include:

m - Part-of-speech (#13: ADJ, ADV, ...)

g - Gender inflection (#3: M, F, N)

n - Number inflection (#3: S, P, U)

Select Z ⊂W = {nt,mt−1, gt−1, nt−1,mt−2, gt−2, nt−2, ...}
maximizing the Utility, Nλ(gt;Z|mt) (→ P (gt|mt, Z))

• Results

Cases λ Z sorted by decreasing Nλ

g 6= N and n 6= U
0 {gt−1, gt−2,mt−1, . . . }
1 {gt−1,mt−1, gt−2, . . . }

Whole data
0 {nt, gt−1,mt−1, . . . }
1 {gt−1, nt−2, gt−2, . . . }
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Conclusions

• Method for learning LCPM structure

• Guidelines:

Seek accurate and simple structure (FLM approach: keep just

the relevant and non-redundant factors and dependencies)

• Process:

Step 1 - manually set initial structure (Linguistic knowledge)

Step 2 - automatically “prune” structure (data-driven

algorithm based on Information Theory concepts)

• Preliminary results seem promising; larger experiments are

needed to get conclusive results
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