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Abstract. This paper presents a semi-automatic method for statistical language
modeling. The method addresses the structure learning problem of the linguistic
classes prediction model (LCPM) in class-dependent N-grams supporting multi-
ple linguistic classes per word. The structure of the LCPM is designed, within the
Factorial Language Model framework, combining a knowledge-based approach
with a data-driven technique. First, simple linguistic knowledge is used to de-
fine a set with linguistic features appropriate to the application, and to sketch the
LCPM main structure. Next an automatic algorithm selects, based on Information
Theory solid concepts, the relevant factors associated to the selected features and
establishes the LCPM definitive structure. This approach is based on the so called
Buried Markov Models[1]. Although only preliminary results were obtained, they
afford great confidence on the method’s ability to learn from the data, LCPM
structures that represent accurately the application’s real dependencies and also
favor the training robustness.
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1 Introduction

The ability of the language model (LM) to represent with enough accuracy the real lin-
guistic structure and redundancy patterns present in an application, reducing properly
and as much as possible the task perplexity, is in general crucial for the performance of
the system using the LM. N-grams continue to be quite common, at least in automatic
speech recognition (ASR), given their effectiveness in many applications and also be-
cause linguistic expertise is dispensed[8]. Nevertheless, when the vocabulary is very
large the sparse data estimation problem usually becomes critical. Statistical modeling
techniques based on data sharing or smoothing principles, e.g. back-off strategies or in-
terpolation methods, have been developed to mitigate over-fitting effects[3, 5]. Another
proposed approach has been the class-dependent N-grams. These are at the basis of this
work. It has been recognized that in the case of some applications exhibiting relatively
complex linguistic patterns involving multiple linguistic features, new and better ap-
proaches to exploit those patterns are needed[6, 7]. This work addresses this particular
issue, proposing a method to optimize according to some criteria, based on solid Infor-
mation Theory principles, the structure of the linguistic classes prediction model.
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The structure of the paper is as follows. Section 2 presents a brief analysis of the class-
dependent N-grams modeling ability. Section 3 begins with some discussion on the ap-
plication’s properties motivating the proposed method, and then presents its two main
steps. Preliminary results obtained using this method are presented in section 4. The
main conclusions of this work are pointed-out in section 5.

2 The class-dependent N-grams

Given a sequence of words ω1:T , the Language Model estimates the probabilityP (ω1:T ),
which can be factorized as

∏
t P (ωt|ω1:t−1). Let assume that each word, ω, in the vo-

cabulary, V , is associated to some subset, C(ω), eventually a singleton, of the linguistic
classes set, C. Then

P (ωt|ω1:t−1) =
∑

ct∈C(ωt)

P (ωt|ct, ω1:t−1)P (ct|ω1:t−1). (1)

Two assumptions are made that approximate this conditional probability: 1) it depends
almost entirely of the recent history, so N and M values are set for ω and c depths,
respectively; 2) the linguistic classes prediction can be adequately modeled discarding
the word terminals information. Accordingly,

P (ωt|ω1:t−1) ≈
∑

ct∈C(ωt)

P (ωt|ct, ωt−N+1:t−1)P (ct|ct−M+1:t−1). (2)

In general M > N , typical ranges are N = 2, ..., 5 and M = 3, ..., 7 (and |C| << |V|).
Let now make a brief analysis of the class-dependent N-grams modeling ability,

comparing it with standard N-grams. Let consider |C(ω)| = 1, ∀ω ∈ V , which is
accurate for many words, in order to simplify the following analysis. Accordingly,

P (ωt|ω1:t−1) ≈ P (ωt|ct, ωt−N+1:t−1)P (ct|ct−M+1:t−1), (3)

where ct = f(ωt) for some known function f . Then, the conditional probability ex-
pected log-value E = E[log(P (ωt|ω1:t−1))], over a representative data set {ω1:Tl

}Ll=1,
can be approximated as follows (assuming M > N ):∑

ωt−M+1:t

P (ωt−M+1:t)log(P (ωt|ct, ωt−N+1:t−1)P (ct|ct−M+1:t−1))

=
∑

ωt−M+1:t

P (ωt−M+1:t)log
(P (ωt, ct|ωt−N+1:t−1)

P (ct|ωt−N+1:t−1)
P (ct|ct−M+1:t−1)

)
=

∑
ωt−N+1:t

P (ωt−N+1:t)logP (ωt|ωt−N+1:t−1)

+
∑

ωt−M+1:t

P (ωt−M+1:t)log
P (ct|ct−M+1:t−1)

P (ct|ωt−N+1:t−1)
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The first term expresses the conditional probability expected log-value corresponding
to a standard N-gram. Continuing to assume that c is uniquely determined by ω, the
second term can be written:∑

ωt−M+1:t

P (ωt−M+1:t)log
P (ct|ct−M+1:t−N , ct−N+1:t−1)

P (ct|ct−N+1:t−1)

=
∑

ωt−M+1:t

P (ωt−M+1:t)log
P (ct, ct−M+1:t−N |ct−N+1:t−1)

P (ct|ct−N+1:t−1)P (ct−M+1:t−N |ct−N+1:t1)

It is clear that the second term represents the conditional mutual information between
ct and ct−M+1:t−N given ct−N+1:t−1, i.e., I(ct; ct−M+1:t−N |ct−N+1:t−1). Compar-
ing with a standard N-gram, is fair to expect that the descriptive power of this model is
substantially larger, iff ct−M+1:t−N conveys relevant information about the outcome of
ct, not present in ct−N+1:t−1. Some quite common circumstances favor this potential
improvement: 1) the value of N is in general severely limited by the data resources,
therefore not allowing to capture important past cues; 2) the contrary occurs in rela-
tion to M , which value in general can be made large enough to model early cues that
can be useful; 3) in many real applications the entropy associated to the conditionals
P (ct|c1:t−1) is small, which favors the linguistic classes information as an aid to pre-
dict the sentence words.

3 The linguistic classes prediction model

3.1 A factorial language model approach

The linguistic classes prediction model (LCPM) design follows the factorial language
model (FLM) formalism. In terms of notation, the linguistic classes variable c becomes
a vector with K components (factors), f1:K ; accordingly, hereafter, ct1:t2 is replaced
by f1:Kt1:t2 . It is well known that in general statistical models may improve greatly when
structural changes, even mild though well-aimed, are made to model relevant statistical
dependencies, or pruning unimportant and wasteful ones.
Just to illustrate the initial step of the proposed method, let consider a very simple ex-
ample. Based on common linguistic knowledge let suppose that the LCPM for an appli-
cation requires only two linguistic features, the thematic tag (sports, fruits, etc.) and the
gender inflection (masculine, feminine or neuter) associated to any word, correspond-
ing respectively to the factors f1t and f2t for the present word, ωt. The goal is to build
a model able to deliver good estimates for P (f1:2t |f1:2t−M+1:t−1). If these features were
mutually independent then a simple factorization would lead to

∏2
i=1 P (f

i
t |f it−M+1:t−1)

to compute these estimates. Let now make the two following assumptions (very reason-
able in the Portuguese language): 1) the outcome of f1t is conditionally independent
of f21:t, given its own history, i.e., f1t ⊥⊥f21:t|f11:t−1; and 2) f2t depends strongly of f1t ,
even knowing its own history, i.e., f2t 6⊥⊥f11:t|f21:t−1. Now, a statistical structure corre-
sponding to P (f1t |f1t−M+1:t−1)P (f

2
t |f1t−M+1:t, f

2
t−M+1:t−1) should be considered to

compute the intended estimates. Such as just illustrated, the method’s initial step (for-
malized in section 3.2) consists of selecting manually the linguistic features at the basis
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of the set of factors and establishing a baseline structure.
Prolonging the example above, in order to illustrate the second step of the method, let
suppose that the data had shown using appropriate measures that the gender instantiated
two words preceding the present word (ωt) is dominant to help predicting the gender
of ωt, when the theme of ωt is known. In that case, P (f2t |f1t−M+1:t, f

1:2
t−M+1:t−1) ≈

P (f2t |f1t , f2t−2) seems a good approximation. Indeed, the method’s second step, which
is performed automatically based on a data-driven approach, selects criteriously factors
corresponding to past instantiations of the previously selected features and establishes
the definitive structure of the model, ultimately pursuing a good compromise between
descriptive ability and robustness. The selection criterion essentially uses an informa-
tion utility measure[2], applying it to the candidate factors in different contexts, such as
explained in section3.3, which may bring special advantages in some applications.

3.2 The baseline structure

Jointly, the selected linguistic features must satisfy two main requisites: 1) to convey
information that effectively contributes to predict correctly the words in the sentence;
and 2) the available data resources fit up the requirements to get robust models. The
linguistic features are selected based on common linguistic knowledge relevant for the
application, which in general is a relatively simple task that yields a suitable set f1:K 1.
Having in mind the need to achieve a good statistical structure, it follows a procedure
to split f1:K into two subsets based on the assumption that some features are condition-
ally independent of the other ones given its own history. For instance, in the illustra-
tive example in the previous section, f1t ⊥⊥f21:t|f11:t−1 but the conditional independence
assumption does not verifies in relation to f2t , i.e., f2t 6⊥⊥f11:t|f21:t−1. This splitting op-
eration is performed non-automatically, once again common linguistic knowledge is in
general sufficient to achieve the intended result (in this work was not developed an au-
tomatic data-driven method to split f1:K , but that is very well feasible). The following
conventions are used hereafter: it is assumed that any feature in f1:J , with J < K, is
conditionally independent of any other feature, present or past instantiations, given its
own history, i.e., f it⊥⊥f

j
1:t|f i1:t−1, ∀i 6= j, 1 ≤ i ≤ J, 1 ≤ j ≤ K; and fJ+1:K

correspond to the remaining features, not satisfying the conditional independence as-
sumption. Accordingly, the baseline LCPM computes the estimates:

P (ct|ct−M+1:t−1) ≈ P (fJ+1:K
t |f1:Jt , f1:Kt−M+1:t−1)

J∏
i=1

P (f it |f it−M+1:t−1) (4)

The product-operator factors can be computed by standard N-grams. The conditional
probability corresponding to the ”non-independent” features is addressed in the next
section.

1 The lighter notation f1:K is used to express the features set {f1, f2, . . . , fK}. The same
convention is used, from now on, with fm:n

i:j representing a factors set (where fντ , τ =
i, . . . , j ν = m, . . . , n represents the factor corresponding to the linguistic feature fν at
time τ ).
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3.3 The structure optimization

In general it is not trivial to train robustly a model able to generate accurate estimates
for P (fJ+1:K

t |f1:Jt , f1:Kt−M+1:t−1). Even if M is only a few units and J and K are in
the order of the dozens, a fully connected statistical structure is not practicable. Some
structural optimization, based on proper criteria, is essential. Follows the presentation
of an automatic method that selects only the factors in f1:Kt−M+1:t−1 satisfying a criteria
adapted from the work[1] that lead to the so called Buried Markov Models. In order
to simplify the exposition, let introduce the following notation: X , Y and W stand for
the sets f1:Jt , fJ+1:K

t and f1:Kt−M+1:t−1, respectively; and Z denotes a subset of W .
Accordingly, the goal is to find Z ⊂ W such that robust estimates P (Y |X,Z) approx-
imate well enough P (Y |X,W ). Using an Information Theory formulation, any factor
fντ ∈ W candidate to be an element of Z must be selected only if it conveys new in-
formation, not provided by those factors already selected or by X , i.e., it must exhibit
high score for the conditional mutual information (CMI) I(Y ; fντ |X,Z \ fντ ). This cri-
terion should lead to |Z| factors that, as a whole, exhibit the larger score for the CMI
I(Y ;Z|X) measured on a sufficiently large and representative data set, so reinforcing
the model descriptive power[4]. An extended criterion was introduced in order to favor
the selection of factors that increase the difference between the CMI scores measured
in different contexts established by X .
Before formalizing the method, the following example illustrates the idea. Keeping the
example as simple as possible, let consider that both random variables X and Y are
scalars (each represents a single feature): X ∈ {F, S} and Y ∈ {A,B,U}. Let sup-
pose that Y = U corresponds to ”undefined” category (or simply means unlabeled
data) and let also admit that this value, U , brings very little information to the LCPM.
Let confront two possible sets for the variable Z, also scalar: Z(1) ∈ {C,D, V } and
Z(2) ∈ {E,F,W}. In the performed simulation P (X = F ) = 0.6 (so P (X = S) =
0.4) and the conditionals P (y, z(i)|x), i = 1, 2 are shown in figure 1. According to
the criterion referred above, Z(1) is selected instead of Z(2) (I(Y ;Z(1)|X) = 0.177 >
I(Y ;Z(2)|X) = 0.009). Indeed, the results in the figure 1 show that in both contexts,
X = F or X = S, Z(1) is clearly more informative than Z(2) about the outcome of
Y . Let suppose now that another data set is used. Running again the simulation are ob-
tained the distributions shown in figure 2. Applying the same criterion as above, now
Z(2) is selected instead of Z(1) (I(Y ;Z(1)|X) = 0.208 < I(Y ;Z(2)|X) = 0.471). At
first, this result seems acceptable, given the peak P (y = U, z(2) =W |X), on both con-
texts of X , which does not happens in the case of Z(1). But considering the supposition
made that Y = U brings very little information to the LCPM, then this result becomes
very unfortunate, since with any of the data sets Z(1) is much more informative than
Z(2) about the outcome of Y if not considering Y = U . A very interesting evidence
provided by the figure 2 is that in the case of Z(2) the results are very similar when
comparing both contexts, X = F or X = S. And very important too, that similarity
does not happens at all in the case of Z(1). It worth’s to notice that the same evidence
is provided by the results in the figure 1. This illustrative example suggests that a selec-
tion criterion based on some measure able to account for the CMI scores estimated in
different contexts established by the variable X , should be considered.
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Fig. 1. Probabilistic distributions corresponding to the first data set (Y and Z variables in the
vertical and horizontal axis, respectively).

Let begin invoking the cross-context conditional mutual information (CCCMI)

IXm(Y ;Z|X = Xn) =
∑
Y

∑
Z

P (Y,Z|Xm) log
P (Y,Z|Xn)

P (Y |Xn)P (Z|Xn)
(5)

If Xm = Xn then obviously results the CMI. The Weighted Utility (WU) measure[1]
is defined as follows

M(λ)(Y ;Z|X = Xn) = I(Y ;Z|X = Xn)−

−λ
∑

Xm 6=Xn

P (Xm)IXm
(Y ;Z|X = Xn) (6)

where λ ∈ [0, 1]. This measure could be used to implement a criterion so that new com-
ponents of Z should increase the difference between the CMI and some fraction of the
CCCMI average. Finally, let introduce the Global Weighted Utility (GWU) measure[1],
that averages the WU based on the distribution of the variable X .

N(λ)(Y ;Z|X) =
∑
Xm

P (Xm)M(λ)(Y ;Z|X = Xm) (7)

Revisiting the illustrative example above, using the GWU measure with λ = 1, now
for both data sets the variable Z(1) is selected instead of Z(2). In the case o the second
data set the GWU scores are: N(1.0)(Y ;Z1|X) = 0.427 > N(1.0)(Y ;Z2|X) = 0.223.
A secure margin separates the scores for the comparing variables, as a consequence of
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Fig. 2. Probabilistic distributions corresponding to the second data set (Y and Z variables in the
vertical and horizontal axis, respectively).

the ability of the GWU measure to capture the variables informativeness differences
depending on the context (established by X).
Using the GWU measure, the selection of certain number of factors in W should be
relatively straight. Often though the available data is scarce in relation to the dimensions
of X , Y and Z, preventing reliable estimates of the defined measures. The proposed
algorithm (see ”Algorithm 1”) follows an iterative approach, eventually finding a sub-
optimal solution though more reliable and surely less costly[2]. The strategy is simple,
begin with an empty Z and, at each new iteration, add criteriously a component to
it. The parameters γ and η must be tuned empirically. Lines 1 to 5 eliminate from
the initial candidates set, the linguistic factors that do not convey enough information,
using as threshold some fraction of the entropy associated to fJ+1:K

t conditioned on
f1:Jt . Line 6 sorts the remaining factors, placing those with higher GWU scores on the
top. Lines 7 to 13 begin with an empty Z, then at each new iteration the factor at the top
of the queue sorted in 6 is pulled out and is added to Z if is not redundant in relation to
the factors already selected. The process stops when the required dimension of Z, Dz ,
is reached.

4 Results

The results here presented were obtained from two experiments, kept as simple as
possible, though still allowing to en-light key aspects of the proposed method. The
data used, extracted from the corpus ”CETEMPublico”[10], has a vocabulary with



8 Vitor Pera

Algorithm 1 Factors selection (definition of Z)
Require: f1:K

t−M+1:t, J , K, M , DZ , λ, γ, η,Data
Ensure: Structure of the vector Z
1: for each z ∈ f1:K

t−M+1:t−1 do
2: if I(fJ+1:K

t ; z|f1:J
t ) < γH(fJ+1:K

t |f1:J
t ) then

3: Remove z from f1:K
t−M+1:t−1

4: end if
5: end for
6: Sort f1:K

t−M+1:t−1 by descending order of N(λ)(f
J+1:K
t ; z|f1:J

t )
7: Z ⇐ ∅
8: repeat
9: z ⇐ next non-processed element in f1:K

t−M+1:t−1

10: if I(fJ+1:K
t ; z|f1:J

t ) > ηI(z; r|f1:J
t ), ∀r ∈ Z then

11: Add z to Z
12: end if
13: until |Z| = DZ or all elements of f1:K

t−M+1:t−1 are processed
14: return Z

200K words. Just K = 3 linguistic features were used, which factors span a win-
dow with length M = 3. The available data allowed the robust estimation of the
used measures. The linguistic factors associated to each word are the morpho-syntactic
tag (or part-of-speech)[9], the gender inflection and the number inflection, denoted
respectively by the symbols m, g and n. The features can take the values: mt ∈
{ADJ,ADV,CONJ,DET,NOM,P,PR,PRP,PRP+DET,V,other}; g ∈ G2 or g ∈
G3, where G2 = {MASC,FEM} and G3 = {MASC,FEM,NEUT}; n ∈ G2 or n ∈ G3,
where N2 = {SING,PLUR} and N3 = {SING,PLUR,UNDEF}. Only the feature m
is assumed to be independent of the other ones, so J = 1 and f1t−2:t = mt−2:t. Like-
wise, f2t−2:t = gt−2:t and f3t−2:t = nt−2:t. In order to make clear the results from the
two experiments, an adaptation of the algorithm presented in section 3.3 was used, com-
puting separately the factors set Z for each factor in fJ+1:K

t . Consequently, the joint
conditional in equation 4 is approximated considering the factors in fJ+1:K

t condition-
ally independent each other, which does not harms the conclusions of this experiment.
Let denote by Zg and Zn the subsets of W corresponding, respectively, to the features
g and n.
In the initial experiment g ∈ G2 and n ∈ N2. Table 1 presents the factors selection
ranking for g and n. In the case of g, such as expected both for λ = 0 (GWU parameter)
or λ = 1, gt−1 is the most informative factor concerning the outcome of gt. The follow-
ing rank positions are different depending on λ, but must be noticed that the three first
places coincide, gt−2 and mt−1 are selected the most relevant factors after gt−1. These
results seem very reasonable, such as those referring to n, with the past instantiations
of n, and then of m and g, by this order, selected as relevant cues for nt.
In the second experiment g ∈ G3 and n ∈ N3, i.e., are also considered the ”neuter”
and ”undefined” categories for g and n, respectively. Table 2 presents the factors se-
lection ranking for g and n. The results are very surprising, either for n or g, when
λ = 0: nt is selected as the most relevant factor to inform about the gt outcome, and
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Table 1. Results of experiment 1.

Rank Zg Zn
λ = 0 λ = 1 λ = 0 λ = 1

1 gt−1 gt−1 nt−1 nt−1

2 gt−2 mt−1 nt−2 nt−2

3 mt−1 gt−2 mt−1 mt−1

4 nt mt−2 mt−2 mt−2

5 mt−2 nt−1 gt gt−1

6 nt−1 nt gt−1 gt−2

7 nt−2 nt−2 gt−2 gt

Table 2. Results of experiment 2.

Rank Zg Zn
λ = 0 λ = 1 λ = 0 λ = 1

1 nt gt−1 gt nt−1

2 gt−1 mt−2 nt−1 mt−2

3 mt−1 gt−2 mt−1 nt−2

4 mt−2 nt−2 nt−2 gt−2

5 gt−2 nt−1 mt−2 gt−1

6 nt−1 mt−1 gt−2 mt−1

7 nt−2 nt gt−1 gt

vice-verso! Only in the second place stand the expected choices: gt−1 for gt and nt−1
for nt. Contrarily, when λ = 1 the factors selected as the most relevant are precisely the
expected ones. It is important to find the explanation for these differences, depending
on the value of λ. In large part the explanation is the following. Even for categories
of m having no gender inflection, such as verbs for instance, in many data samples of
the second data set, g = NEUT and n = UNDEF, therefore g and n become quite in-
formative each other (similarly to the illustrative example presented in section 3.3) and
consequently when λ = 0 are obtained unexpected results. When λ = 1, the GWU
measure is able to capture the g and n informativeness differences depending on the
context established by m, leading to selections that agree with basic linguistic knowl-
edge. It worth’s to emphasize the ability of the method to circumvent this ”unfavorable”
annotation circumstance, which is not uncommon. Eventually, the method is also able
to deal properly with some other ”flaws” affecting the corpus. Such as pointed out be-
fore, just preliminary experiments were already performed. Further experiments have
been planed for comparing the method with other approaches on standard tasks. Never-
theless, the obtained results afford confidence on the method’s ability to learn, from the
data, good statistical structures for the LCPM in practical applications.



10 Vitor Pera

5 Conclusions

In this paper was presented a method for statistical language modeling, designed for an
application that satisfies the following conditions: 1) the vocabulary is large, typically
at least a few hundred thousand words, in general making difficult to build accurate and
robust models; 2) the redundancy patterns inherent to the application can be exploited
more efficiently selecting, based on proper criteria and common linguistic knowledge,
some set of linguistic features that can be associated to the vocabulary words, following
an approach such as the class-dependent N-grams; 3) at least part of these features can-
not be modeled independently and the data resources are too scarce to allow building a
robust linguistic classes prediction model (LCPM) with fully connected structure. The
designed method deals precisely with the problem of optimizing the LCPM structure
(the implementation and training problems are not addressed), and complies with two
general principles: 1) the overall performance of a statistical model is strongly related
to the ability of its structure to represent the application’s real dependencies; 2) parsi-
mony favors structures modeling just the relevant statistical dependencies according to
some appropriate criterion. The proposed method follows a semi-automatic structure
learning approach: after the basic structure being set manually, then a data-driven algo-
rithm, using Information Theory measures, refines the model structure. Although only
preliminary experiments were performed, the obtained results show that the method is
able to deliver LCPM structures that represent the application’s real dependencies and
also favor the robustness requirement. Besides, the method presents a remarkable abil-
ity to deal with some unfavorable circumstances, or even some flaws, which are not
uncommon, affecting the annotation information of the data used to build the models.
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