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Abstract

The main goal of this report is to present in detail the language
model (LM) of the ABCP1 speech recognizer. Here are reported several
versions of the LM that were developed considering different options at
the linguistic (lexical or syntactic) or implementation levels. This re-
port also includes the explanation of experiments that were important
on taking decisions that lead to some established solutions. When were
recognized appealing research opportunities, sometimes these experi-
ments were extended beyond the strictly necessary to build the LM.
Briefly, the following achievements were attained. Both phonetically or
syllabically based single-pronunciation lexicons, for a vocabulary not
exceeding 20K words, were built. At the syntactic level, several prob-
abilistic models were developed to implement the ABCP1 recognizer,
or else to gain a better insight about this subject. Less common ap-
proaches were also experimented, for instance encoding into the gram-
mars knowledge related to the lexical categories assigned to the words
in the sentence, eventually considering gender and number concordance
relations too. Interesting results were also achieved with methods that
were experimented trying to reduce the impact of the lack of train-
ing data. One of these methods, which results seem more promising,
starts training the LM with the available specific text corpora. Then,
retrains a subset of the LM parameters identified as potentially less ro-
bust, using a much larger corpora, though possibly with quite different
characteristics. For the best of the author’s knowledge that approach
presents conceptual originality and its natural implementation differs
substantially of techniques used in Automatic Speech Recognition.
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1 Introduction

It is well known that the performance of an automatic speech recognizer
strongly depends on the efficiency of the respective Language Model (LM). In
many speech recognition applications, language modeling becomes a difficult
problem as soon as is intended to build an user friendly interface. Ultimately,
this is a consequence of the great complexity of any natural language1.

In the particular case of the speech interface for which the ABCP1 speech
recognizer was built, some simplification was achieved imposing three main
restrictions: 1) no spontaneous speech is allowed, though the user may pro-
nounce the sentences continuously; 2) the vocabulary is limited to 20,000
words; 3) and is not accepted a large variation on the pronunciation of
any word. Therefore, the ABCP1 system can be classified as a continuous
speech, medium-to-large vocabulary and a speaker dependent like recog-
nizer. Nevertheless, the following key points kept present all along the pro-
cess of building the LM, that must comply with the established minimum
performance level: 1) the need of building the LM as small as possible; 2)
the need of having a LM fast enough to allow real-time operation; 3) and
the interest in disposing of some adaptation method that could restrain the
effects of the lack of data for training the LM. As an example, it was tried
to replace higher order complete ngrams by smaller ngrams combined with
less conventional linguistic knowledge that could be encoded efficiently. For
instance, bigrams were combined with statistics modeling knowledge related
to the lexical categories assigned to the words in the sentence, eventually
considering gender and number concordance relations too. The empirical
results were very interesting. Regarding to the point three, above, most
of the work done addressed the problem of combining statistics estimated
from a relatively small text corpus specific to this speech application, with
those extracted from another corpus, which is much larger but presents very
different linguistic contents. Contrarily to the standard approaches to this
problem, the proposed method starts building a tuned LM using the specific
corpus. And only then, an identified subset of the less well-trained param-
eters is retrained using also the larger corpus. The obtained preliminary
results allow one to expect that this approach can effectively improve the
LM, at least in some particular modeling contexts .

Reflecting the work done, contents of two different sorts compose this
report: 1) the structure and the blocks implementation of any available
version of the LM is here presented; 2) besides, the explanation of part of
the experiments that were performed all along the work trying to find the
answer to specific questions are reported here too. Such as it will be made
clear in this report, a few of the proposed solutions are not intended to be

1When we study human language, we are approaching what some might call the ”hu-
man essence,” the distinctive qualities of mind that are, so far as we know, unique to man.
Noam Chomsky, Language and Mind.
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implemented in real-time in the ABCP1 recognizer, so a simulation must be
carried out to assess its behavior.

The structure of this report is as follows. Section 2 presents a general de-
scription of the language models LM1 and LM2, corresponding respectively
to the first and the second decoding stages of the ABCP1 recognizer. More
detailed information, including related experiments, about the modules in
these two models are given in the following sections. Section 3 is mostly
dedicated to the word lexicons that were developed, based on phonemic, or
else on syllabic, units. Section 4 addresses the LM at the syntactic level,
describing the performed experiments, with the emphasis on the most rele-
vant results, and also presents some selected versions of the grammars that
were built for the LM1 and LM2 models. Suggestions for future work are
presented in Section 5 and the conclusions are drawn in Section 6.

2 An overview of the LM1 and LM2 models

2.1 General aspects

The ABCP1 system supports a speech recognition application with the fol-
lowing features:

• is based on the European Portuguese 2 (EP) language;

• the recognition task presents broad linguistic topics;

• the vocabulary is limited to 20,000 words;

• the structure of most sentences corresponds to a reading-like continu-
ous manner of speaking;

• and the pronunciation variation is small.

In Appendix B is presented a brief characterization of the main text
corpus, named ABCP1 CP1, that was used to build this speech interface
(more details can be found in [V. Pera (2011a)]).

The recognizer runs in real-time based on two decoding stages, or passes.
The initial pass (pass-1), that can be viewed as performing a fast look-ahead
operation, keeps uninterruptedly control of the decoding process during 2
seconds, approximately, in average. Then, the second pass (pass-2) gains the
control during a shorter interval of time, eventually during a speech pause,
and finds the best recognition hypothesis considering the search space that
resulted of the pass-1. This cycle repeats as long as the recognizer operates.

2Even after the Orthographic Accord (2nd revision, 2008) was settled, some ortho-
graphic differences remain between the EP and the Brazilian one, for instance the pair
aritmética and arimética, among other curious cases; around 0.5% of the general vocabu-
lary of the language (∼ 110K words) accepts double orthography.
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These two passes require quite different restrictions, also at the language
model level. The LM1 must contribute substantially to shrink the search
space, obviously, but some trade-off was settled considering the gains that
could result from using more linguistic knowledge and the available compu-
tational power. In brief, the acoustics play the main role in the established
fast look-ahead approach. The fact that the recognizer is speaker dependent,
which in general renders more reliable acoustic cues, naturally increases the
importance of the acoustic (or visual, in this particular recognizer) restric-
tions. Accordingly, relatively costless linguistic restrictions were encoded
into the LM1 model by means of: a phonemically based lexicon; and a word-
pair grammar in combination with unigram statistics. Comparatively, the
LM2 encodes deeper linguistic knowledge from the established recognition
task. At the lexical level, two lexicons were built. One is based on phonemes
and considers two-sided contextual information, so is a tri-phones lexicon.
The other lexicon is based on visyllables (meaning ”visual syllables”). The
established set of visyllables should be minimum and still allow to represent
properly any pair of syllables, considering the respective visual realizations.
These two lexicons must be used simultaneously during the pass-2, when
the acoustic and the visual feature streams are jointly decoded. At the syn-
tactic level, the LM2 can use a bigram or a trigram. In some versions of
the LM2, these grammars are combined with higher-order ngrams modeling
the sequences of lexical categories, or parts of speech (POS), assigned to the
words in the sentences.

2.2 The LM1 model

At the sub-word level, the LM1 is based on the 38 phonemes presented in
the Table 1. This phonemic set is composed of 15 vowels, 3 glides and 20
consonants3.

Each vocabulary word maps into an unique entry in the lexicon, accord-
ing to the typical pronunciation with normal, or eventually slightly lower,
speech rate. A few different words, such as for instance á, há, or ah, present
identical pronunciation (/a/, in these cases). Two versions of this lexicon
exist. One is a standard linear lexicon, where each word is transcribed sep-
arately. The other lexicon is supported by an hybrid structure: most of the
words are transcribed based on a lexicon tree; and each one of the remain-
ing words, that are selected based on recognition performance and operation
speed criteria, is transcribed separately. In this report, the name of any ver-
sion of this lexicon is LM1 LEX vn. More detailed information is presented
in the Section 3.1.

At the syntactic level, the LM1 consists of two main components, a
unigram and a word-pair grammar. In the case of the words transcribed in

3Appendix A presents the correspondence between the IPA symbols and the symbols
(similar to those in the SAMPA set) that are used in the developed code.
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Symbol Example Symbol Example
a pá p pó
5 cama d data
5̃ mão t mato
E pé g gato
Ẽ bem k moca
e dedo m cama
ẽ tempo n nome
9 dedal ñ vinho
i ida v vida

ĩ indo f fome
O pó z caso
o bolo s tussa
õ som Z jantar
u tudo S mexe
ũ mundo L velho
j pai l mola
w mau ë mel
w̃ mão R fazer
b bota R correr

Table 1: The phonemes at the basis of the LM1.

the lexical tree, the unigram probabilities are factorized along the respective
branches, following a standard approach. Naturally, in the case of the words
associated to the linear lexicon, these probabilities are established at the
entry points. In this report, the module with all these probabilities is referred
as LM1 1G. More information on this grammar exists in the Section 4.2.1.

Regarding to the word-pair, it must be emphasized that during the pass-1
the decoding process is implemented assuming the single one-best hypothe-
sis, strongly reinforcing the bottleneck effect associated to the lower nodes in
the lexicon tree. Then, since the larger part (or even the entire vocabulary,
if pretended) is supported by the lexicon tree, the word-pair restrictions can-
not be fully profitable. Nevertheless, published results respecting to similar
approaches show that even with that handicap the word-pair contributes
effectively to reduce the recognition task perplexity and the respective word
error rates. This grammar is named LM1 WP and is detailed in the sub-
section 4.1.

Table 2 summarizes some information in relation to the LM modules
introduced in this Section, also linking them to the different versions of
the LM1 that were built 4 (this information can be especially useful when

4It must be noticed that some implementation differences also exist, between the LM1-
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Module Brief description LM1-v1 LM1-v2

LM1 LEX 1 linear lexicon (whole vocabulary) •

LM1 LEX 2 linear+tree lexicon •

LM1 1G unigram • •

LM1 WP word-pair • •

Table 2: Information on the LM1 modules.

reporting experiments and results).

2.3 The LM2 model

When the pass-2 is running, the search space is established based on a
word-trellis, containing all the candidate words. So, the main purpose of the
LM2 is to assist, jointly with the audio-visual models, on the multi-modal
decoding process running upon that word-trellis.

In a more simplistic approach, the pass-2 would dispense additional lexi-
cal knowledge, since each word candidate already has assigned the respective
acoustic likelihood computed in the pass-1. The same lexicons used in the
LM1 can be used here. In the pass-2 may be necessary to re-score the acous-
tic likelihoods at the words ends, due to the eventual (small) differences in
the alignments, as a measure to mitigate the effects of the single one-best
hypothesis assumed in the pass-1. Finally, the pass-2 also uses the visual
features stream, which implies to know how to compose any word based on
an effective set of sub-word visual units. According to these main princi-
ples, two main lexicons support the LM2 model: the LM2 LEX PHN and
the LM2 LEX VSL.

The LM2 LEX PHN is based on the same 38 phonemes used in the
LM1 LEX (see Table 1).

The LM2 LEX VSL is based on sub-word units that are defined at the
syllabic level. In this report these units are named visyllables, or visual
syllables, since they correspond to the visual realization of the respective
syllables. For instance, /pa/v could denote the visyllable corresponding
to the sequence of frames showing the mouth of the subject when utters
the final syllable of the word mapa (map). One obvious advantage of this
approach, when designing a speech recognizer, is that the number of vi-
syllables is much smaller than the number of syllables. By the other side,
it can happen that different words, or parts of words, present an identical
visyllabic representation even when they are acoustically distinguishable.
For instance, the words mapa and papa are very difficult to distinguish vi-
sually. Both words can be visyllabically transcribed as /pa-pa/v (in each
word, the initial vowel is more open than the other one, but visually that

v1 and LM1-v2 versions, in the modules LM1 1G and LM1 WP.
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difference vanishes). In Portuguese there are more than 4,000 syllables and
the number of vysillables is just in the order of the hundreds. Comparing
to what happens at the phonetic level, in Portuguese usually are considered
between 30 and 40 phonemes and only 13 visemes. In spite of these con-
sequences for the discriminability loss of the visual stream, it is important
to have in mind that the visual cues are fundamentally supplementary to
the acoustics. The following steps were performed to build the visyllabic
transcription of each word in LM2 LEX VSL: 1) get the phonetically based
transcription (possibly discarding the contextual information); 2) apply a
syllabification procedure in order to obtain the syllabic transcription; 3) fi-
nally, using a phoneme-to-viseme table, convert this segmented sequence of
phonemes into the vysillabic transcription of the word. In the second step,
above, the procedure was almost manual, but larger lexicons would obvi-
ously obligate to automatize the syllabification process. It is intended in a
near future to improve the obtained visyllabic lexicon by means of known
automatic techniques that use the available visual material associated to the
text corpus (see Section 5).

At the syntactic level two different approaches were followed. One is
simply based on bigrams or trigrams. Several versions were built, with
different combinations of the smoothing method, the cutoff parameters, the
text source or the vocabulary. The fact that the available corpus is relatively
small caused some difficulties even in the case of the bigrams. Obviously, the
trigrams were much more affected by the lack of data. Indeed, none of the
trigrams could be developed following the standard procedures. No exclusive
validation or test sets were established and the trigrams were trained simply
using the same data that is used to perform the experiments. Nevertheless,
it is important to emphasize that these trigrams are important to support
comparative experiments with very low perplexity. In this report, these
bigrams and trigrams are named LM2 2G vn or LM2 3G vn, respectively.

The other approach is based on the combination of two knowledge sources.
One ot these sources is essentially the same that is used in the LM2 2G vn,
again with the already experimented robustness difficulties. The other
knowledge is related to the statistical dependencies observed in the respec-
tive sequences of syntactic classes. A syntactic tagger was chosen 5 to assign
the parts of speech (POS) tags to the preceding words. Given the small
number of different classes, even when also is associated the gender and the
number information, trigrams to ”predict” these classes can be trained more
robustly. Besides, this knowledge is relatively independent from the speech
application, so, such as expected, much larger corpora can be advantageous
even when their linguistic scope is substantially different. In this report,
these grammars are referenced by the name LM2 HG vn (HG stands for
hybrid grammar).

5More information on this tool can be found in the Appendix D.
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Module Brief description
LM2-

-v1n -v2n -v3n -v4n

LM2 LEX PHN phonetic lexicon • • • •

LM2 LEX VSL visyllabic lexicon • • •

LM2 2G vn 2-grams • •

LM2 3G vn 3-grams •

LM2 HG vn hybrid grammar •

Table 3: Information on the LM2 modules.

Table 3 summarizes some information in relation to the LM modules in-
dicated in this Section, also linking them to the different versions of the LM2
that were built (this information can be useful when reporting experiments
and results).

3 The lexical level in the LM

3.1 The LM1 LEX lexicon

The LM1 LEX lexicon consists of phonemically based transcriptions of all
the words in the vocabulary. At present, two versions exist, the LM1 LEX v1
and the LM1 LEX v2. Both versions were built based on the ABCP cor-
pus (including the acoustic materials), which main features in this context
are: 1) the vocabulary consists of 7,599 words in the EP language ; 2) the
pronunciation variation is rather small and corresponds to a reading-like
continuous manner of speaking, with a normal or slightly slow register (all
the acoustic material was produced by an unique subject). More information
concerning this corpus can be found in the Appendix B and a more detailed
presentation exists in the respective Technical Report[V. Pera (2011a)].

According to the features above, the LM1 LEX v1 and the LM1 LEX v2
are single-pronunciation lexicons. Both are based on the 38 phonemes (15
vowels, 3 glides and 20 consonants) presented in the Table 1. Although it is
intended that a later version of the recognizer will support out of vocabulary
(OOV) words, none of the existing LM1 LEX versions contains any entry
dedicated to OOV models.

The LM1 LEX v1 is a standard linear lexicon, with each word being
transcribed separately.

The LM1 LEX v2 lexicon is supported by an hybrid structure. The
larger part of the vocabulary is usually transcribed based on a lexicon tree.
A standard linear lexicon is used for the remaining words, usually function
words and also other frequent words.

The Appendix E contains the information needed to have access to the
data file with the phonemic transcriptions that both LM1 lexicons use, and
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also to the code that compiles that information into the lexicon tree, in the
case of the LM1 LEX v2.

3.2 The LM2 LEX PHN lexicon

For the time being the LM2 LEX PHN lexicon is exactly equal to the
LM1 LEX. Some modifications, such as allowing multiple pronunciations for
some of the most common words, are intended to implement in the future.

3.3 The LM2 LEX VSL lexicon

The LM2 LEX VSL lexicon consists of the vysillabic transcriptions of all
the words in the vocabulary. No pronunciation variation is considered, ac-
cording to the existing phonetic lexicons. For the English language several
suggestions exist for viseme sets, but the scenario is very different in the case
of the Portuguese. So, a brief study was carried out in order to establish
a visemes set that could be appropriate when building the LM2 LEX VSL
lexicon. In the case of the consonant sounds, for instance, Table 4 presents
information, in particular concerning the articulation place, related to their
grouping into viseme classes.

Consonant(s) Artic. place Artic. manner

b p bilabial
d t alveolar oral stop
g k velar

m bilabial
n alveolar nasal stop
J palatal

v f labiodental
fricative

z s apical

Z S palatal africate

L palatal
lateral

l h alveolar

r R alveolar vibrant

Table 4: Articulation place and manner of the consonants (ABCP symbols
set).

The procedure used for building the LM2 LEX VSL requires the pho-
netic lexicon LM1 LEX 1 and the phoneme to viseme mapping that is shown
in the Table 5, based on the ABCP phonemic-symbols set.

Although the properties of the syllables go beyond just the phonetic seg-
mentation of speech, the baseline procedure used for building the visyllabic
transcription of each word, w, in the vocabulary presents the following steps:
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Phoneme(s) Viseme

a 6 6∼ a

E e e∼ @ y e

i i∼ j i

O o o∼ o

u u∼ w w∼ u

b p m p

d t n d

g k g

z s z

l h l

r R r

J L J

Z S Z

v f v

Table 5: The phone/viseme conversion table (ABCP symbols set).

1) get the phonetic transcription, Pw, from LM1 LEX 1; 2) segment Pw ac-
cording to the established syllabification principles, obtaining Sw; 3) using
the phoneme to viseme conversion table, convert Sw into Vw. Considering,
for instance, the word tudo, the results in each step are: 1) /t u d u/; 2)
/tu-du/; 3) /du-du/v.

In relation to the step (2), some clarification of the syllabification method
is presented next. For the existing LM2 LEX VSL, the segmentation was
made non-authomatically, following an intuitive criterion according to a few
principles that are summarized next.

Following a generally accepted model, also valid in the EP language, the
structure of the syllables is hierarchical, such as Figure 1 shows.

Syllable

Onset Rhyme

Nucleus Coda

Figure 1: Syllables internal structure.

Every syllable has the Rhyme component. The Rhyme consists of the Nu-
cleus and, possibly, the Coda. It can be that the Rhyme is preceded by the
onset.

This structure complies with the general sonority principle: the sonor-
ity of the elements that compose a syllable increases from the beginning
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up to the Nucleus, and then decreases until the end of the syllable. The
sonority scale, by ascending order and in terms of broad classes, is: plosive
consonants; fricatives; nasals; liquids; glides; and vowels.

Concerning to the onset position, it can be empty, e.g. in the monosyl-
labic word ar /a R/ (air). Another possibility is to be simple, with almost
any consonant, e.g. in the word bar /b a R/. Or else, the onset position can
be complex, with a sequence of consonants, e.g. in traz /t R a S/. In this
last case, besides the sonority principle also must be satisfied, with just a
few exceptions, the so called dissimilarity principle, stating that the distance
between the sonority of contiguous consonants in the sequence must be max-
imum. Therefore, for instance, syllables with plosive followed by liquid in
the onset, e.g. in the initial syllable of prata /pRa-t5/ (silver), are much
more frequent than syllables with plosive followed by nasal, such as in gnose
/gnO-z9/ (gnosis). In the EP language, quite often occur three consonants in
the onset, such as, for instance, in the initial syllable of the estrada (road),
with the sillabically segmented phonetic transcription /StRa-d5/ (curiously,
if the same word is uttered more slowly the transcription possibly becomes
/eS-tRa-d5/). These sequences can present up to six consonants, such as the
initial syllable /dSprSti/, in the word desprestigiar (depreciate).

Relatively to the Nucleus, in the case of the EP language is always oc-
cupied by one or more vowels or nasals. An example of a simple Nucleus
is the monosyllabic word pé /pE/ (foot). The complex Nucleus consists of
a decreasing dithong (vowel+glide), eventually nasal, e.g. in the word mo
/m5̃w̃/ (hand). Such as it was already exemplified, sometimes the syllab-
ification is ambiguous, depending on the speech rate. For instance, in a
normal register the word guio (guidon) presents two syllables, /gi-5̃w̃/, with
the Nucleus /5̃w̃/ in the second syllable. But in a faster regist only one
syllable exists, /gj5̃w̃/. Softening the rules, it can be considered that the
nucleus is maintained and the glide /j/ joins /g/ in the onset position. When
the vowels /i/ or /u/ succeed other vowel, eventually they do not become a
glide, e.g. in the word ráız /R5-IS/.

Finally, in relation to the Coda, in the EP language often /ë/, /R/ or /S/
are the phonemes that occupy this position, e.g. in the words mal /maë/
(wrong), mar /maR/ (sea) and mas /m5S/ (but). In the case of words ending
with /e/, when this vowel is suppressed then the position of Coda is taken
by the preceding consonant, e.g. in the word bate /bat/ (beats).

The syllabic annotation and segmentation information in the particular
case of the ABCP corpus corresponds to a speech rate range between the
slow and the normal registers. Relevant information and data concerning the
ABCP, such as for instance the syllabic schemes (based on the Consonant
or Vowel broad classes) or the visyllables frequencies, are presented in the
respective Technical Report[V. Pera (2011a)].

In the Section 5 are suggested several approaches that possibly allow to
improve the LM2 LEX VSL lexicon. For instance, the problem of optimizing
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the vysillables set and the transcriptions based on the existing visual ma-
terial (eventually adapting known algorithms already experimented in the
case of the acoustically based lexicons) should deserve particular attention.

The Appendix E contains the information needed to have access to the
LM2 LEX VSL data and the code used to generate this lexicon.

4 The syntactic level in the LM

4.1 The LM1 WP grammar

The LM1 WP is the word-pair grammar that was built for the APCP CP1
corpus. All the 8 524 sentences of this corpus were used, such as usually.
Besides the 7 599 vocabulary words, according to the defined lexicons, the
sentence ends tags ’<s>’ and ’</s>’ are also included in this grammar.

The branching factor (not considering the sentence ends tags) is in the
range [1, 918], with 3 879 words (51% of the vocabulary) allowing only one
different succeeding word. The normalized histogram of the branching factor
is presented in Figure 2, confirming that most of the words, by far, have not
many possible different successors. The word e is that one having more

10 102 194 285 377 469 560 652 744 835

Number of different succeeding words

0,0001

0,001

0,01

0,1

1

R
el

at
iv

e 
F

re
q
u
en

cy

Figure 2: Normalized histogram (with log scale) of the word branching factor
in the ABCP corpus.

different successors. Most of the other words with more successors are also
function words, besides a few proper names. The number of different words
that can start any sentence is 972, and 3 022 different words can be located
at the sentences final position.
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This grammar perplexity, estimated using all the sentences too, values
82. It must be emphasized that this value is a quite good estimate only in the
case of using the LM1 LEX 1 (see LM1 v1 in Table 2). Otherwise, if using
the hybrid lexicon LM1 LEX 2, this estimated value is just an optimistic
lower bound of the word-pair perplexity, essentially due to the share of
subword units in the nodes at the lower levels of the lexical tree.

The file word-pair.dat (UTF-8 encoding) uses a typical format, that can
be very easily interpreted, to represent the LM1 WP grammar. The Ap-
pendix E contains information needed to have access to that data file and
also to the programs used to encode that information in the hybrid lexicon.

4.2 The ngrams

4.2.1 The LM1 1G grammar

Both available versions of the LM1 use the LM1 1G unigram, that was
built for the APCP CP1 corpus, using all the available text (it was verified
that only minor differences existed, such as expected, when using only the
sentences in the ABCP a data subset). In the case of the version LM1 v1,
these probabilities just need to be available in a data file to be used directly
when decoding. Otherwise, the version LM1 v2 is based on a lexicon tree, so
in that case the unigram log-probabilities must be factorized and compiled
into that data structure.

Approximately 48% of the words is the vocabulary (3 640 words) occur
only once in the whole text. The word que is the most frequent, occur-
ring 2 638 times, corresponding to approximately 3, 3% of all the words in
the text. Figure 3 shows that the unigram log-probabilities distribution is
approximately exponential. The perplexity of this grammar values 771, ac-
cording to the estimate on the whole text. In the case of the LM1 v2, this
value is just a reference.

The file 1gram.dat (UTF-8 encoding) contains the LM1 1G probabilities.
The Appendix E informs how to access that data file and also the programs
used to compile the factorized unigrams into the hybrid lexicon.

4.2.2 The LM2 2G grammars

The LM2 2G grammars were built using the CMU-Cambridge Statistical
Language Modeling Toolkit v26 (LMtk)[P. Clarkson (1997)]. These gram-
mars were built for the ABCP corpus, which text material, that in this
report is named ABCP, is splet into the ABCP a and ABCP b disjoint
data subsets (see the Appendix B). To train each grammar, one of the fol-
lowing data sets was used: 1) the ABCP a, that was established for that
purpose; 2) or all the ABCP sentences. As a consequence of the lack of

6http://mi.eng.cam.ac.uk/∼prc14/toolkit.html
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Figure 3: Histogram of the LM1 1G log-probabilities.

robustness, due to the quite limited training data, the initial option leads
to relatively high perplexity (PP) values, when estimated on the ABCP b
data (see Table 6). The second option leads to more typical PP values on
similar speech recognition tasks, establishing a reference (PP values in Ta-
ble 7) that can be useful when experimenting the speech recognizer or when
comparing with results obtained using the LM2 3G grammars. Concerning
to the LM2 2G grammars that were trained using the ABCP a subset, in
the versions here reported the vocabulary is open according to the (LMtk)
-vocab-type=2 option, so that OOV is supported on testing although the
vocabulary considered on training covers entirely the training sentences. In
the versions trained with the whole data, a closed vocabulary model was
built (-vocab-type=0 ). Here are reported the grammars that were built us-
ing the Witten-Bell or the Linear discount strategies, which in most of the
performed experiments lead to PP estimates at the same level than the other
two available options (-good-turing and -absolute). Different configurations
of the -cutoff option were experimented, and results obtained with the val-
ues ’0’ or ’1’ are reported here. The begining of sentence symbol ’< s >’
was set in the -context option, allowing the respective forced back-off when
estimating the PP. In Appendix E is given the information needed to have
access to the perl script that builds these versions of the LM2 2G grammar.

Next are presented results, based on the ABCP b testing data, that
were obtained with different training configurations according to what was
exposed before. In each sentence, the unigram probability was used for the
initial word. The LMtk default value of any parameter was used, except if
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explicited here on the contrary.
Table 6 shows the PP estimates when the models are trained with the

ABCP a data, leading to a 6.27% OOV rate. The results show that these

Smooth (option) Perplexity

linear 316.27

witten-bell 308.41

Table 6: Perplexity estimates on the ABCP b text, for different smoothing
methods; train with the ABCP a sentences (vocab-type=2 option).

grammars are not able to decrease the recognition task difficulty as much as
it could be expected, considering that the size of the vocabulary is not very
large and the corpus linguistic scope can be considered quite typical, such
as the sentences structure (the results in Table 7 help to clarify this aspect).

Often, when dealing with ngrams, another important aspect is the size
of the models. Although nowadays, for implementations on standard PCs,
the difficulties related with this subject generally only become relevant in
the case of trigrams or higher order ngrams, it can be interesting to observe
just a few results. The grammars which results are presented in Table 6
use approximately 130 MB (corresponding to approx. 33K bigrams). That
space can be decreased in more than 77% (to ≃ 30 MB) if the bigrams
occurring only once are discarded, causing an increase of the estimated PP
between 7% and 10%, depending of the smoothing method (from 316.27 to
337.43 or from 308.41 to 333.34 in the case of the linear or the witten-bell
options, respectively). In terms of the number of bigrams hit in the ABCP b
data, as a consequence of setting -cutoffs=1 the percentages change from
51.5% to 40.9%. In fact, most of the less frequent bigrams in the train data
are not seen in the test data (as a reference, that percentage takes the value
89.6% for the respective closed vocabulary models built with all the ABCP
sentences and using exclusive back-off option for the sentence begin).

Mainly with the goal of having some reference values to use with the
LM2 3G grammars, bigrams were also built using all the sentences in the
ABCP data set. Table 7 shows the PP estimates for different smoothing
methods, when the models are trained that way. These results, combined

Smooth (option) Perplexity

linear 72.70

witten-bell 65.40

Table 7: Perplexity estimates on ABCP b, for different smoothing methods
(train with ABCP).
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with those presented in Table 6, reflect the fact that the ABCP CP1 corpus
is too small to support the robust train of a bigram (another experiment,
with a different partition of the whole data into training and testing subsets,
led to similar results). Concerning to this aspect, results obtained with the
PUBLICO corpus, which total number of words in the selected sentences
(see Appendix C) is 500 times (approximately) the total number of words
in the ABCP data, reveal, such as expected, that the perplexity estimates
are very close when the testing data is already known of the model (1.33%
OOV rate, with the option vocab-type=1 ), or, on the contrary, was not seen
yet; in the case of the Witten-Bell discount that difference is smaller than
0.2% and in the case of the other smoothing methods the difference keeps
very small.

Comparing the PP values in Table 7 with the PP estimate respecting
the LM1 WP grammar (also built using all ABCP sentences), that has the
approximate value 82, somewhat surprisingly the performance indicators of
the word-pair and the bigrams are quite close (in the case of the good-turing
or the absolute discount options, not referred in this report, the word-pair
PP is even slightly smaller, so that the effect of the discounts surpasses the
advantage of using non-uniform distributions).

The Arpa-files corresponding to the six bigrams here referenced by the
names LM2 2G v1 to LM2 2G v6 are already available. Appendix E shows
how to have access to these files. Table 8 gives the information needed to
link the different versions of the LM2 2G grammar to the respective training
options and also recalls the respective estimated perlexity values.

Version Train Smooth (option) Cutoffs Perplexity

LM2 2G v1 ABCP a linear 0 316.27

LM2 2G v2 ABCP a witten-bell 0 308.41

LM2 2G v3 ABCP a linear 1 337.43

LM2 2G v4 ABCP a witten-bell 1 333.34

LM2 2G v5 ABCP linear 0 72.70

LM2 2G v6 ABCP witten-bell 0 65.40

Table 8: Information related to the already available LM2 2G grammars.

4.2.3 The LM2 3G grammars

Such as it was already pointed out, these grammars were built with the
unique purpose of disposing of low perplexity values, necessary to perform
some experiments implicating also other modules of the ABCP1 recognizer.
The LM2 3G grammars were built using the LMtk package too. Given
the obvious lack of data to train robustly these grammars, were only built
versions trained with data containing all the sentences used on testing. Here
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are reported the versions trained with the whole available sentences in ABCP
These models contain approximately 70K trigrams when cutoffs are not
applied. The vocabulary is closed (-vocab-type=0 ) and the beginning of
sentence symbol ’< s >’ was established in the -context option, allowing the
respective forced back-off when estimating the PP.

Table 9 shows the PP estimates on the ABCP b data when the models
are trained with different smoothing methods (using all the ABCP sentences
on training and with the default configurations when not explicited other-
wise). All the smoothing methods lead to low PP estimates such as expected

Smooth (option) Perplexity

linear 26.95

witten − bell 10.71

Table 9: Perplexity estimates on ABCP b, trainning with ABCP and dif-
ferent smoothing methods.

since the models already know the testing data, which is approximately 1/5
of the whole training data. It becomes clear that the perplexity correspond-
ing to the witten-bell option is much lower than the other values. Possibly,
in part this is associated to the tendency of the Witten-Bell smoothing to
apply particularly aggressive discounts to the ngrams with higher values,
what can bring some benefict when the training data is very scarce, such as
happens here. Due to the exclusive-backoff option, approximately 80% of
the 3grams in the model were hit on the test subset.

The grammars corresponding to linear or to Witten-Bell smooth are
available. Table 10 links the versions names with the respective training
options (also recalling the respective estimated perplexity values). Appendix
E gives the indications needed to have access to the respective arpa-files.

Version Train Smooth (option) Cutoffs Perplexity

LM2 3G v1 ABCP linear 0; 0 26.95

LM2 3G v2 ABCP witten-bell 0; 0 10.71

Table 10: Information related to the already available LM2 3G grammars.

4.3 An hybrid grammar

4.3.1 Idea and formalism

Such as it was already pointed out, essentially the idea is to try to ”com-
pensate” some of the modelling losses due to using a lower order ngram (in
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the case, use a bigram instead of a trigram) by means of imposing other
linguistic restrictions.

This idea was implemented according to the following formalism. Begin
supposing that the decoding process is in progress and let assume that the
sequence of words in the sentence is statistically governed. Let the follow-
ing discrete-valued random variables be stated. The variable w stands for
the actual word hypothesis and w

−k denotes the kth word preceding w (for
instance, w

−1 is the word immediately before w). The variables m, g and
n denote, respectively, the lexical category (or part of speech), the gender
class (possibly with the value ”neuter”) and the number inflection (possibly
with the value ”neuter”) assigned to w. In the case of the word w

−k, these
classes are represented by m

−k, g−k and n
−k. The variable h denotes the

sequence of words preceding w, from the begining of the sentence, and hk is
the sequence {w

−k, w−k+1, . . . , w−1} of the k words immediately preceding
w. The sequence of part-of-speech tags corresponding to h is mh and mhk

denotes the sequence {m
−k,m−k+1, . . . ,m−1}. Given this, the conditional

probability P (w|h) can be expressed as follows:

P (w|h) =
∑

m

∑

g

∑

n

P (w,m, g, n|h)

=
∑

m

∑

g

∑

n

P (w|m, g, n, h)P (m, g, n|h) (1)

In general, the available data imposes some restrictions on the history lenght.
In the particular case of the present LM and training corpus, the empirical
results lead to the conclusion that when modeling the dependencies in the
factor P (w|m, g, n, h) the history h should consider only the word immedi-
ately preceding w. So, the following assumption is made:

P (w|m, g, n, h) ≃ P (w|m, g, n,w
−1) (2)

It must be stressed that this approximation is quite crude, implying a sub-
stantial loss of discrimination ability, such as when a bigram is chosen in a
standard approach. Concerning to the other factor in equation 1, the lin-
guistic knowledge on the speech application allowed to introduce reasonable
simplifications. Let begin factorizing that conditional probability as follows:

P (m, g, n|h) = P (m|h)P (g, n|m,h) (3)

In relation to the factor P (m|h), it can be assumed that the lexical classes
assigned to the words in h convey most of the information existing in h about
m. This assumption can be stated by the expression I(m;h|mh) ≃ 0. This
means that the probability distribution governing m is almost independent
of the value of h given the value of mh, so that P (m|h) ≃ P (m|mh). Indeed,
this approximation is as much acceptable as the conditional mutual infor-
mation gets closer to zero. In the developed LM, P (m|mh) can be trained
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quite robustly with the history lenght up to the value 3. Assuming that this
is enough to capture most of the information in mh, then:

P (m|h) ≃ P (m|mhk
), with k ∈ {1, 2, 3} (4)

The overall merit of this hybrid grammar depends in large measure of the
accuracy of the P (m|mhk

) estimates. Obviously, if it could be possible to
know somehow the exact value of m then the perplexity of this grammar
would decrease substantially. Motivated by this, several experiments were
performed addressing also the possibility of using a much larger corpus that
would allow to train robustly a model for P (m|mhk

) with a relatively larger
value for k. A brief description of that preliminary work is presented in the
Subsection 4.3.2.

In relation to the other factor in equation 3, it was confirmed on the
available data that is acceptable to consider g and n conditionally indepen-
dent given m and h (it could be acceptable to consider g and n unconditional
independent too), so

P (g, n|m,h) ≃ P (g|m,h)P (n|m,h) (5)

Assuming that most of the information in h concerning the value of g given
m is conveyed by the lexical class and the gender associated to the preceding
word, then:

P (g|m,h) ≃ P (g|m,m
−1, g−1) (6)

Since there was, from the beginning, some perception that the gender in-
flection of relatively distant words preceding w could carry important in-
formation about the value of g given m, a brief study was carried out in
order to get a better insight on this topic. The obtained empirical results
seem to confirm that the assumption supporting the model expressed by the
equation 6 is quite reasonable, although it was also clear that it could be
possible to optimize that model, at the cost of making it more complex and
admitting that the training material would be enough to train it robustly.
A brief description of that work is presented in Subsection 4.3.3.

Following an analogous reasoning to that expressed in the equation 6, it
is made the assumption:

P (n|m,h) ≃ P (n|m,m
−1, n−1) (7)

Therefore, the equation 5 is approximated such as follows:

P (g, n|m,h) ≃ P (g|m,m
−1, g−1)P (n|m,m

−1, n−1) (8)

Finally, gathering the results in the equations 2, 3, 4 and 8 into the equation
1, the following result is obtained:

P (w|h) ≃
∑

m

(
P (m|mhk

)
∑

g

(
P (g|m,m

−1, g−1)
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Figure 4: Structure of the developed probabilistic model.

∑

n

(
P (n|m,m

−1, n−1)P (w|m, g, n,w
−1)

)))

(9)

Figure 4 shows the structure of the developed probabilistic model, exposing
the statistical dependencies, and also some of the independence assumptions
that were made, among the established random variables. The causal rea-
soning that is clear in this representation is subjacent to the Bayesian Belief
Networks (BBN) or, more generally, to the Graphical Models (GM). It is
important to recall that not all the assumptions made were based on the
observed statistical properties. In particular, the approximation expressed
in the equation 2 was forced by the circumstance that the available text cor-
pus is not large enough to allow training robustly a model with higher order
dependencies. In the Section 5 are presented a few notes regarding to the
possibility of using known structure learning (or model selection) methods
in order to improve these models.

Concerning the implementation and parameterization of the probabilistic
model, the task is relatively simple, since the variables are discrete-valued
and all are observable. Based on the maximum likelihood (ML) criteria and
on the relative frequencies, the local conditional probability distributions
can be easily computed.

Empirical results were also obtained discarding the gender and number
inflections associated to the words in the sentence (some of these results are
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shown in Figure 7), in which case the equation 9 simplifies to:

P (w|h) ≃
∑

m

P (m|mhk
)P (w|m,w

−1) (10)

4.3.2 Experiments with the morpho-syntactic model

This subsection reports some of the experiments that were carried out hav-
ing in mind to improve the accuracy of the P (m|mhk

) estimates (in the
sequence of the assumptions that lead to the equation 4), that are essential
in this hybrid (or factored) grammar. These experiments followed two lead-
ing objectives. The first one, which is relatively simple, consists essentially
on the assessment of these estimates, depending on the value of k (such as
defined in the subsection 4.3.1) and based on the text corpus that was built
for this specific application. That corpus is not large enough to allow robust
training, and this fact is the main motivation for the other objective. There-
fore, the experiments and respective results presented in the second part of
this subsection deal with the problem of trying to combine, based on known
principles, the original statistics with other extracted from a much larger
corpus. Two main approaches were followed: one is based on the linear in-
terpolation method; the other follows a back-off strategy, which is combined
with additional restrictions designed to reduce the mismatch between both
corpora.

The results that are going to be presented in this section are based on
the ABCP CP1 (see Appendix B) and the PUBLICO (see Appendix C)
corpora. In concrete, are used the ABCP a, ABCP b, PBL a and PBL b
subsets, containing 6 524 (66 003), 2 000 (21 244), 1 615 047 (32 007 253), and
461 422 (9 136 908) sentences (words), respectively. Ultimately, the efficiency
of any LM in a speech recognizer is evaluated based on the recognition scores.
That is not viable at the moment, and since in general exist a strong relation
between these scores and the perplexity of the LM estimated on the testing
data, in this work these estimates are used as the main indicators of the LM
efficiency.

Figure 5 shows how the perplexity estimates obtained with two differ-
ent models P (m|mhk

) = P (m|m
−k, ...,m−1) evolve changing the value of

k ∈ {1, . . . , 4}. There are 17 different classes. In relation to the model
trained using the ABCP a dataset, are presented the curves corresponding
to the perplexity estimated on the same data (ABCP a curve) or else on the
ABCP b dataset (ABCP b). It is clear from the curve ABCP b that occurs
overfitting when k exceeds the value 2. This phenomenon can be highlighted
comparing with the behavior of the model that is trained with the PBL a
data (the curves PBL a and PBL b correspond to the perplexity estimates
on these datasets). The curve PBL b presents a monotonous behavior. The
curves PBL a and PBL b almost coincide, apparently begining to diverge
only when k = 4, also reflecting the relative training robustness, besides the
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Figure 5: History lenght dependence of the perplexity associated to the
models trained with the ABCP a dataset (ABCP a and ABCP b curves) or
with the PBL a dataset (PBL a and PBL b curves).

non-existence of sensible mismatch between both datasets. One important
conclusion emerges from these results: if the model is going to be trained
using only the ABCP a dataset, then must be fixed k = 2 (corresponding to
a 3gram dependence). Indeed, this condition is applied in the LM2 HG v2
grammar, that supported most of the experiments done, including those
here reported, based on the ABCP CP1 corpus in the scope of the hybrid
grammar topic.

The results also suggest that, eventually, the model trained with the
ABCP a dataset can be improved using also information from the PUBLICO
corpora. The perception of its potential is reinforced by the fact quite often
emphasized that in general the parts-of-speech categorization is one of the
linguistic analysis levels presenting lesser mismatch among text corpora.

One of the obvious possibilities to combine the statistics extracted from
the two corpora is simply to interpolate linearly the respective models, ac-
cording to the formula:

P (m|mhk
) = λPA(m|mhk

) + (1− λ)PP (m|mhk
), λ ∈ [0, 1] (11)

where PA(m|mhk
) and PP (m|mhk

) are the models trained, respectively, with
the ABCP a and the PBL a datasets. Figure 6 presents the results that can
be obtained with this approach. The three curves respect to the perplexity
estimates (PP) on the ABCP b dataset. The curve ABCP b, respecting
to the model PA(m|mhk

), is already known from the Figure 5. The curve
PBL b, respecting to the model PP (m|mhk

), behaves not completely surpris-
ingly. Such as expected, the dependence on the value of k is monotonous in
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Figure 6: Perplexity estimations over the ABCP b dataset using the models
trained with the ABCP a or PBL a datasets (ABCP b and PBL b curves),
or else with the interpolated model (DL curve).

this range of values. By the other side, the parts of speech linguistic level
mismatch between the ABCP a and the PBL a datasets reveals to be sub-
stantial, such as suggested when k = 1. The curve DL (from deleted inter-
polation), corresponding to the interpolated model (equation 11), rises two
interesting conclusions. One conclusion is that following this approach the
statistics from PP (m|mhk

) can improve clearly the behavior of PA(m|mhk
)

when k exceeds the value 2. In the particular case of k = 3, when the
results from the ABCP b curve only start degrading: the value of PP de-
creases from 7.19 to the 6.85 (4.7%rel decrease). The other conclusion is that
this approach is not able to reduce significantly the value of the perplexity
when considering the whole k range. Indeed, the measured reduction (DL
curve) form PP = 6.87, with k = 2, to PP = 6.85, with k = 3, is not
significant. The fact that no significant gain can be obtained with this in-
terpolation approach is due, in great part, to the substantial mismatch that
exists between the ABCP a and the PBL a datasets at the linguistic level
based on parts of speech (POS) tags (this suggests that one must be cautious
when interpreting the common statement that ”in general linguistic analysis
based on POS categorization are relatively independent of the data”).

Taking in consideration results that were obtained in analogous exper-
iments, one cannot expect that the two main conclusions just exposed can
change qualitatively if the interpolation uses different values of λ for each
morpho-syntactic class, even being certain that some small improvement of
the absolute PP estimates would occur. By the way, the values of λ used to
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get the results in the Figure 6 are: 0.652 (if k = 1); 0.567 (if k = 2); 0.503
(if k = 3); and 0.429 (if k = 4). Not unexpectedly, the value of λ decreases
(so, weighting more the larger dataset) when k becomes larger.

In the sequence of these results, the other approach that was followed is
based on a back-off strategy, according to the equation:

P (m|mhk
) =

{
PP (m|mhk

) if {m
−k, . . . ,m}P exists

ǫ(mhk
)PA(m|mhk−1

) else
(12)

Basically, the idea behind this approach is to try improving the results mod-
eling higher range dependencies, based on more data, even running the risks
inherent to the data mismatch. According to the proposed model, the es-
timates PP (m|mhk

), based on the PBL a dataset, are use if the respec-
tive sequences occur in that data. Otherwise, the lower order estimates
PA(m|mhk−1

), based on the ABCP a dataset, are used. The ǫ(mhk
) factor

allows to get (entire) probabilities.
This model was experimented with k = 3, only, and the perplexity es-

timated on the ABCP b dataset is 8.45. This result is clearly worse than
the value of 7.19 (ABCP b curve), corresponding to approximately 17.5%rel

increase of the perplexity value.
Since the parts of speech linguistic level mismatch between the two cor-

pora certainly is one of the leading factors for this bad result, it was tryied to
get normalized upper branch conditional probabilities P̂P (m|mhk

) imposing
an additional condition:

∑

m
−k

P̂P (m−k,m−k+1, . . . ,m) = PA(m−k+1, . . . ,m) (13)

with the new estimates in the summation related with the old ones using
the variable factor α as follows:

P̂P (m−k, . . . ,m) = PP (m−k, . . . ,m)α(m
−k+1, . . . ,m) (14)

Then, it can be easily deduced the adaptation formula:

P̂ (m|mhk
) =

PP (m|mhk
)α(m

−k+1, . . . ,m)∑
m (PP (m|mhk

)α(m
−k+1, . . . ,m))

(15)

with α holding the quotient between the joint probabilities based on the
ABCP a or on the PBL a datasets:

α(m
−k+1, . . . ,m) =

PA(m−k+1, . . . ,m)

PP (m−k+1, . . . ,m)
(16)

Replacing PP (m|mhk
), in equation 12, by the adapted conditional prob-

ability P̂P (m|mhk
), and considering k = 3, it is obtained the perplexity,

estimated on the ABCP b dataset, of 6.98. This result demonstrates the ef-
ficiency of the normalization method (equation 15), allowing to decrease the

23



initial probability value, 8.45, on approximately 17.4%rel. Also compares
favorably with the result from the model trained only with the ABCP a
dataset, for the same value of k = 3, decreasing the perplexity from 7.19,
corresponding to 2.9%rel decrease. Finally, this result is worse than that ob-
tained with the interpolation method (PP = 6.85, for k = 3), corresponding
to 1.9%rel increase. It must be referred that using in-house developed code
(see Appendix E), quite easily can be experimented a few variants based on
the equation 12. A few suggestions concerning this topic are included in the
Section 5.

4.3.3 Experiments with the gender inflection model

The main problem in consideration here is that of choosing good depen-
dencies to reduce the perplexity associated to the gender inflection cate-
gorization (variable g) when using the model that computes the respective
conditional probabilities (equation 9). It is well known, when choosing fea-
tures in classification problems, that possibly ”the m best features are not
the best m features”. If there is not enough aprioristic knowledge, it can
be necessary to use some feature selection method. In this particular study
was used an implementation of the method mRMR - minimal redundancy
maximal relevance[H. Peng (2005), C. Ding (2005)] 7. According to the au-
thors, this implementation does not convolve with specific classifiers but
one can expect that the selected features have good performance on vari-
ous types of classifiers. In brief, following an incremental approach, each
given feature is ranked based on the discriminative potential of that fea-
ture jointly with the features with higher rank, as a whole. Two evaluation
functions are available, both based on the minimum redundancy condition
(min{WI = 1/|S|2

∑
i,j I(i, j)}) and on the maximum relevance condition

(max{VI = 1/|S|
∑

i I(g, j)}), where i and j are the candidate features,
and g denotes the gender class. Those functions are: the Mutual informa-
tion difference criterion (MID), max{VI−WI}; and the Mutual information
quotient criterion (MIQ), max{VI/WI}. Table 11 presents part of the re-
sults generated by the program mRMR, based on the ABCP a subset of the
ABCP CP1 corpus (see Appendix B). Two different cases are considered,
such as the table shows: one considers that the gender variable can take the
value Feminin, Masculin, or Neuter, that is, g ∈ {F,M,N}; in the other
case, that is based on approximately half the data, are eliminated all the
samples with Neuter gender, so g ∈ {F,M}. In each one of these cases, the
features in the table are ranked, according to decreasing values of a score
directly related to the mutual information I(g; feature) measure. Some
conclusions may be extracted from these results. Let start noting that when
g ∈ {F,M,N}, the morpho-syntactic features m, m

−1, m−2 and m
−3 (con-

sidering the history lenght 3), convey much more information concerning

7This program is available in the Web site http://penglab.janelia.org/proj/mRMR/
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g ∈ {F,M,N} g ∈ {F,M}

feature score feature score

m 1.003 g
−1 0.267

m
−1 0.151 g

−2 0.023

g
−1 0.137 m 0.009

m
−2 0.015 m

−1 0.006

g
−2 0.013 g

−3 0.003

m
−3 0.004 m

−2 0.002

Table 11: Features ranking based on I(g; feature) related score (output of
the program mRMR).

the value of g, comparatively with the other case. This is mainly a conse-
quence of the fact that does not occurs the gender inflection in approximately
half the lexical classes, particularly for the verbs, which are very frequent.
Considering the case g ∈ {F,M,N}, that is the most important from the
practical point of view, the obtained scores allow to conclude that m, m

−1

and g
−1, by this order, are, clearly, the features carrying more discriminant

information, when judged separately. Considering now the case g ∈ {F,M},
it can be verified that the gender inflection of the word preceding w, g

−1, is,
per se, the most informative feature, presenting a score much higher than
m or m

−1.
Table 12 presents other results generated by the program mRMR, based

on the data already presented and considering g ∈ {F,M,N}. These results
also consider the redundancy existing among the features, so they should
contribute to clarify which feature set could be a good choice. A few inter-

MIQ MID

feature score feature score

m 1.003 m 1.003

g
−1 0.630 g

−3 −0.003

m
−3 0.276 g

−1 0.021

m
−1 0.289 g

−2 −0.087

g
−2 0.100 m

−3 −0.276

m
−2 0.033 m

−1 −0.211

g
−3 0.012 m

−2 −0.404

Table 12: Features ranking based on the minimal redundancy maximal rel-
evance principle, with g ∈ {F,M,N} (output of the program mRMR).

esting conclusions can be drawn from Table 12. Such as expected, according
to the results in Table 11, both MIQ and MID evaluation functions put m in
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the first rank. Obviously, the following features deserve more attention since
the value of m is supposed to be determined when computing P (g|m,h) in
equation 5. It is quite useful to know that, according to the MIQ evaluation,
the feature g

−1 is in rank 2, presenting the minimal redundancy and simul-
taneously the maximal relevance when considered jointly with m. Besides, if
the MID evaluation function is used, still the feature g

−1 is well classified, in
rank 3. Considering for instance the MIQ based results and not regarding to
m, it is clear the existence of three different score levels: g

−1 at the higher
level, then m

−3 and m
−1 at an intermediate level, and finally the lower

ranked features g
−2, m−2 and g

−3. Still based on the MIQ results, this indi-
cates that, for instance, the models P (g|m, g

−1,m−3) and P (g|m, g
−1,m−1)

should be good approximations, at similar level, to the first factor in equa-
tion 5 and, on the contrary, P (g|m, g

−1, g−3), for instance, should be a worse
choice. Curiously, making a similar analysis based on the MID evaluation
function the conclusions concerning the use of the feature m

−3 would be
different. Indeed, some discrepancies between the results obtained with the
MID or the MIQ functions are perfectly expected, since these functions use
different operations to combine the minimum redundancy and the maximum
relevance conditions and, besides, often the relative merits of the features
are not very distinct (it must be noted that the baseline nature of these
evaluation functions is emphasized by the authors). Nevertheless, it seems
secure to conclude that the selection of g

−1 as one of the features to use in
the equation 5 is a good decision.

Table 13 presents some results that were generated by the program
mRMR, based on the same data and considering again g ∈ {F,M,N}. The
difference, comparatively to Table 12, is that these results were obtained
categorizing jointly, for each word, the morpho-syntactic and the gender in-
flection (with exception of the word w), so, for instance, (m

−1, g−1) denotes
the random variable holding both properties for the word w

−1. Not regard-

MIQ MID

feature(s) score feature(s) score

m 1.003 m 1.003

(m
−1, g−1) 0.485 (m

−3, g−3) −0.018

(m
−3, g−3) 0.110 (m

−1, g−1) −0.077

(m
−2, g−2) 0.059 (m

−2, g−2) −0.536

Table 13: Joint-features ranking based on the minimal redundancy maximal
relevance principle, with g ∈ {F,M,N} (output of the program mRMR).

ing once again the feature m, the results respecting to the MIQ evaluation
in Table 13 show that the m

−1 and g
−1 constitute a good subset of features

to be selected. Considering the MID function, that pair of features seems to
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perform just little worse than (m
−3,g−3). In both cases, the pair (m

−2,g−2)
is indicated as being the worst choice. Possibly, this result is affected by
the minimum redundancy condition, that in this particular problem would
favour some features spreading in the time domain.

Table 14 shows the results obtained by the mRMR program considering
the joint-features such as those in Table 13, now resuming the experiment
already reported in Table 11, when g ∈ {F,M}. These results strengthen

MIQ MID

feature(s) score feature(s) score

(m
−1, g−1) 0.348 (m

−1, g−1) 0.348

(m
−3, g−3) 0.054 (m

−3, g−3) −0.140

(m
−2, g−2) 0.042 m −0.324

m 0.035 (m
−2, g−2) −.0538

Table 14: Features rank based on theminimal redundancy maximal relevance
principle, with g ∈ {F,M} (output of the program mRMR).

the conviction that m
−1 and g

−1 constitute a good subset of features to be
selected.

Indeed, the obtained results, including those here reported, reinforced by
some practical aspects concerning the model implementation, contributed to
the decision of selecting them

−1 and g
−1 features to use jointly withm in the

model expressed in equation 5. Briefly, this approach is simple to implement
and seems quite efficient, although it becomes clear also that it would be
possible to capture more information about the value of g given m using a
more complex model.

4.3.4 Experiments with smoothing variations

Along this work, several experiments were carried out dedicated to the
ngrams smoothing topic. Most of the work focused in trigrams P (w|w

−1,m)
(using variables definitions and nomenclature such as in the equation 10, for
instance). Initially, the main motivation was to study possibilities of im-
proving these models, considering aspects related to robustness and also
accuracy, in the context of the distributions smoothing. Particular atten-
tion was paid to the integration of prior knowledge associated to the variable
m, too. In the particular case of the Witten-Bell discount technique, was
implemented and experimented a quite simple variation that allows to estab-
lish different discount levels. However, no systematization of these results
was made that could deserve its presentation here. Besides, the main goal
demands a deeper work, and there was no opportunity to do that effort yet.
Anyhow, this introduction increased the confidence on the potential of this
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subject and augmented the interest in continuing the work (in the Section 5
are made some references to this subject).

4.3.5 The LM2 HG grammars

Two implementations of the probabilistic models presented in Section 4.3.1
exist, namely the LM2 HG v1 and the LM2 HG v2. Both grammars are
based on the equation 9, though, in this Section are also presented re-
sults corresponding to the model established according to the equation 10.
The LM2 HG v1 grammar was trained with the ABCP CP1 corpus and the
LM2 HG v2 was trained with the PUBLICO corpus. According to the estab-
lished model, besides the knowledge associated to the words sequences, from
the data was also extracted the knowledge concerning the morpho-syntactic
and the gender and number inflection (which categories are associated to
each word in the vocabulary, possibly depending on the morpho-syntactic
instantiation). To use these grammars, besides the data files containing the
grammatical knowledge is also needed a POS tagger, that assigns the tags to
words preceeding the current hypothesis during the model estimation. For
the time being, the code allows to run offline a morpho-syntactic analyzer
that is available in the Web (see the Appendix D to get more information
on this tool). At least apparently, that tagger is based on a method that
does not presents any essential obstacle to integrate it in an online version of
the speech recognizer (see Section 5). Finally, is also available the code that
integrates all the referred modules, allowing to simulate the grammar oper-
ation in the speech recognition process. Appendix E gives the indications
needed to have access to these files.

In the case of the LM2 HG v1 grammar, nm(ng(nn+1)+1) products and
nm(ng(nn + 1) + 1) − 3 additions have to be computed to get each P (w|h)
estimate, where nm, ng and nn are, respectively the number of different
lexical classes (actually, 17), gender classes (3, including the neuter) and
number inflection classes (also 3). In the Table 15 are presented the number
of accesses (if no optimization method is implemented) to the hash-tables
used to save the local conditional probabilities, and a lower bound to the
respective sizes (that depends on using, or not, perfect hashing, or even-
tual approximations), where nw is the vocabulary size and n = nm . ng . nn.
It is important to emphasize that the code can be optimized pruning the
summations in equation 9, so that the terms corresponding to negligible con-
ditional probabilities can be eliminated. It can be expected that the final
results do not change significantly because of that approximation. The spa-
tial requirements are dominated by the hash-table containing the estimates
of P (w|m, g, n,w

−1), for moderate values of k.
In the case of the LM2 HG v2 grammar, the time and space requirements

are smaller than those respecting the LM2 HG v1 grammar.
In the Appendix E are given the necessary indications to run the simu-

28



P (w| . . .) P (m| . . .) P (g| . . .) P (n| . . .)

Number of accesses n nm nm . ng n

Size (upper bound) n . nw (nm)k (nm)2 . ng (nm)2 . nn

Table 15: Hash-tables utilization in the LM2 HG v1 grammar (k is the
parameter in equation 9, typically an integer near 3) and the conditional
probabilities refer to those in equation 9.

lations with the LM2 HG v1 and the LM2 HG v2 grammars.

4.3.6 Results obtained with the LM2 HG grammars

The results in this Section were obtained with the LM2 HG v1 and the
LM2 HG v2 grammars, introduced in the previous Section. Table 16 presents
two perplexity values, both estimated on the ABCP b data. One refers to
the baseline model that computes the conditional probabilities P (w|w

−1),
therefore not using the POS categorization nor the gender and number in-
flection information (see Section 4.2.2). The other value was obtained with
the LM2 HG v1, considering k = 2 in the equation 9 (so, corresponding
to a trigram to ”predict” the variable m). The parameters of both gram-
mars were trained using the ABCP a data. These results, corresponding to

Model Perplexity (decrease)

P (w|w
−1) 308.41 (baseline)

LM2 HG v1 280.57 (9.03%rel)

Table 16: Baseline perplexity (PP) and PP based on the LM2 HG v1 gram-
mar (equation 9, with k = 2), both estimated in the ABCP b testset.

a PP decrease in 9.03%rel, are conform with the strong expectations that
LM2 HG v1 is more precise than the baseline grammar. Is also important
to recall (Section 4.2.2) that the baseline grammar is not robust, so does
not generalizes well. And it can be expected that these difficulties become
worse in the case of the somewhat larger LM2 HG v1 grammar. Therefore,
the following experiments were obtained with models trained using a much
larger dataset. Indeed, the LM2 HG v2 grammar is based on the PUB-
LICO corpus. Is used the PBL a subset, containing 1 615 047 (32 007 253)
sentences (words), to train the models. And is used the PBL c subset, with
230 720 (4 574 198) sentences (words), for testing8, so that all the perplex-
ity values here presented refer to this task. Changing to a much larger

8In substitution of the PBL b subset, with approximately double size, initially used for
testing, because of being very time consuming.
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corpus brought, unfortunately, the disadvantage of having to account for a
much higher computation effort to run the experiments. Because of this, it
was decided to approximate the equation 9 in the implementation, reducing
substantially the time required to run any experiment. This approximation
allowed to eliminate two inner cycles in the code, in consequence of assigning
to each word a category corresponding to m, g and n, jointly. So, mapping
injectively (m, g, n) into a random variable c, is obtained the equation:

P (w|h) ≃
∑

c

P (c|chk
)P (w|c, w

−1) (17)

where chk
stands for {c

−k, c−k+1, . . . , c−1}, following the established nomen-
clature. Obviously, the structure of this probabilistic model is more con-
nected than that corresponding to the equation 9, since several assumptions
introduced in the subsection 4.3.1 are not considered now.

The results in the Table 17 and in the Figure 7 refer to this implemen-
tation. To serve as reference, is presented in the top of the Table 17 the
perplexity estimated with a standard bigram, P (w|w

−1), so not considering
the lexical (m), gender (g) and number (n) categorizations. The vocabulary
is open (according to the option vocabulary-type=1 of the CMU/Cambridge-
LM toolkit), considering only the subset from the 50K most frequent words
of the corpus PUBLICO that also belong to the ABCP CP1 corpus.

Configuration Perplexity (decrease)

P (w|w
−1) 144.92 (baseline)

HG w/ k = 1 129.08 (10.9%rel)

HG w/ k = 2 120.13 (17.1%rel)

HG w/ k = 3 126.82 (12.4%rel)

Table 17: Perplexity estimates based on the LM2 HG v2 grammar, for dif-
ferent values of k, in the equation 17.

Table 17 shows that the best result occurs with k = 2, corresponding to
a substantial decrease of the perplexity (17.1%rel). If k > 2, then it seems
that the model P (c|chk

) becomes overfitting.
Results from two other tests, still based on the approximated implemen-

tation, are going to be presented next. One respects to the model expressed
in the equation 10, not considering neither the gender nor the number in-
flections, relatively to the tests above (curve ”m” in the Figure 7). The
other test refers to the model expressed in the equation 9, but in this case
not considering only the number inflection (curve ”m + g” in the Figure
7). Figure 7 shows these results and also the baseline result and the other
results in the Table 17 (curve ”m+ g + n”).

In conclusion, the empirical results confirm clearly that is very advanta-
geous, in terms of modeling precision improvement, to add morpho-syntactic
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Figure 7: Perplexity estimates based on the LM2 HG v2 grammar, for dif-
ferent values of k, in the equation 17, and different dependencies of the
gender and number inflection categories.

and gender and number inflection knowledge to the standard LM approach.

4.4 A grammar adaptation mechanism

4.4.1 Introduction

Essentially, the problem here addressed consists of combining efficiently the
knowledge extracted from multiple text corpora in order to build a good LM
for a given application. It is intended that, for any sequence of words w,
the probability P (w) is a good estimate of the underlying real distribution.
Let consider that two text corpora exist, encoding some linguistic knowl-
edge associated to the application and differing essentially in two important
aspects: the ”suitability” in relation to the application, and the size. One
of the data sets, let call it A, is specific to the application but is relatively
small (a common problem in the case of the ngrams). The other, that can be
denoted by B, is much larger but is less tuned with the application. Often,
this problem appears in the context of an application which LM needs to be
updated regularly. The existing model, that is supposed had be trained with
a B-like corpus, is then adapted using the A-like data. In other contexts
this approach is still frequent, although different intuitions could be more
appropriate. In some particular cases the problem can be better viewed as
departing from a LM trained with an A-like corpus, and at some point be-
comes available B, that hopefully could be used to improve the LM (let call
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it ”A → A+B approach) 9.
One of the interesting aspects of this approach is based on the possi-

bility of identifying, using prior knowledge and having access to important
cues resulting from the operation of the LM (trained with the A-like data), a
subset of the model parameters particularly less robust. If the ”weak param-
eters” of the original LM are effectively determined, then in principle better
strategies can be implemented to improve the LM by means of knowledge
extracted from the B-like data (see Section 5).

Several techniques have been proposed to deal with the problem of LM
adaptation, which can be classified[J. Bellegarda (2001)] as model interpola-
tion - including model merging, dynamic cache models and MAP adaptation
-, or constraint specification - including exponential models, MDI adaptation
and unigram constraints -, or meta-information extraction - such as mixture
models or explicit topic models-. The techniques used in the experiments
that were carried out, which are briefly presented in the next subsection,
could be assigned to model interpolation/MAP adaptation. Also accord-
ing to the taxonomy above, planned extension of these experiments, in the
scope of the A → A + B idea, could include concepts and techniques from
”meta-information extraction”.

4.4.2 Experiments

In this subsection are going to be presented preliminary results obtained
having in mind the A → A+B approach introduced in the previous subsec-
tion. So, it is supposed that already exists some relevant prior knowledge
or some cues about the weaknesses of the LM (see subsection 4.4.1) trained
with the A-like data. Due to practical reasons - one of the most important
is that, at the moment, is not easy to simulate the integration of the LM
in appropriate recognition processes to gather information that could help
identifying some real weaknesses - and also due to the need of getting a
better insight on relevant topics - for instance, concerning the use of syn-
tactic knowledge -, the experiments here reported use a simplistic approach
to the initial problem of identifying the ”weak parameters”. This allows to
implement and simulate quite easily part of the idea .

Concerning the text data that supported the experiments, the scenario
is as follows. In terms of training material, the ABCP CP1 (Appendix B)
and the PUBLICO (Appendix C) corpora support the A and B data sets,
respectively. And the ABCP b sentences set is used as the main testset.

The sentences from ABCP a (the A data set) are supposed to be spe-
cific of the speech application, but are not representative enough. The lack

9Eventually, these ”principle” differences vanish if some combination methods and
respective implementations are followed; that can be the case, for instance, if using some
interpolation methods (a quite common solution) to combine the parameters associated
to A or B.
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of robustness of the bigram corresponding to the conditional probabilities
P (w|w

−1) and trained with the ABCP a data is clear in the results shown
in Table 8, for instance comparing the PP estimates obtained with the ver-
sions 1 and 5 (or 2 and 6). In the case of the respective trigram, with
P (w|w

−1, c) such as defined in the equation 17, even considering that the
number of morpho-syntactic classes is relatively small (in the order of the
tens, typically), it can be expected that the model robustness decreases even
further.

Hope exists that the sentences from PBL a (the B data set) contain use-
full knowledge concerning this application. The size of PBL a is between
two and three magnitude orders larger than the size of ABCP a. Table 18
presents results obtained with two bigrams trained with the PBL a data, us-
ing the Witten-Bell discount method. In one of the bigrams, the vocabulary
has size 57 K, containing all the words that appear at least 10 times in the
data. The other bigram has a vocabulary with 5.7 K words, corresponding
to all the words that exist in 57 K size vocabulary and also exist in the
ABCP data. Considering the smaller vocabulary (that leads to high OOV

Vocabulary Testset Perplexity (bits) OOV (%) 2grms hit (%)

5.7K PBL a 136.89 (7.10) 29.47 97.20

5.7K PBL c 145.85 (7.19) 29.48 95.60

5.7K ABCP b 487.56 (8.93) 10.06 82.66

57K PBL a 235.09 (7.88) 1.33 94.87

57K PBL c 344.93 (8.43) 1.43 86.62

57K ABCP b 629.56 (9.30) 5.09 79.21

Table 18: Perplexity, OOV and 2grams-hit rates for different testsets, de-
pending on the vocabulary considered to build a bigram trained with the
PBL a data (Witten-Bell method).

rates), it is obvious that the PBL a allows quite robust training of the model
parameters, corresponding to only 0.09 bits entropy increase when testing
the bigram on PBL c instead of PBL a. And the entropy increases 1.83 bits
when testing the bigram in the ABCP b data, reflecting the substantial
mismatch between the PBL a and the ABCP b data sets. Considering the
other vocabulary (approx. 57K entries), now the number of parameters in
the ngram is approximately one order of magnitude higher. Therefore, a less
robust model can be expected. Indeed, the entropy increases 0.55 bits on
the PBL c data. The increase in that measure remains high in the case of
the ABCP b testset. In this context, the main conclusion is that a substan-
tial linguistic mismatch exists between the ABCP and the PBL data sets
(both ABCP a and PBL b consists of large parts of ABCP and PBL, re-
spectively). Besides, the results also give some intuition on the ability of the
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PBL a data set to train robustly a bigram. These can be useful indications,
since in the model P (w|w

−1, c) one of the variables is the morpho-syntactic
class, existing in a small domain (and carrying relatively strong restrictions).

The experiments reported next consider the problem of improving the
estimates of P (w|w

−1, c), where w, w−1 and c denote, respectively, the cur-
rent word, the previous word, and the morpho-syntactic class plus the gender
and number inflections associated to w (such as appears in the equation 17).
Let start considering that the available model to compute P (w|w

−1, c) was
trained with the ABCP a data set. Given the serious limitations of this
data set, already emphasized, some frequency smoothing method is crucial.
A trigram, combined with a back-off smoothing scheme, was ued:

P (w|w
−1, c) =

{
α(w

−1, c, w) if ∃(w
−1, c, w)

γ(w
−1, c)P (w|c) else.

(18)

In relation to the bigram corresponding to P (w|c), in the performed exper-
iments was also implemented the respective back-off smoothing scheme. In
both the ngrams was applied the Witten-Bell discount method. The γ fac-
tor, in equation 18, (such as the analogous factor in the bigram) guarantee
that P (w|w

−1, c) sums to unity, for any (w
−1, c).

Now, according to the A → A+B approach, arises the question of iden-
tifying parameters in this model that can be specially responsible for its
lack of robustness. Such as it was referred in the begin of this section, in
the scope of these experiments a simplistic approach is proposed. In the
model represented in the equation 18, some estimates of α(w

−1, c, w) are
potentially more incorrect. In particular, an overestimation tendency gener-
ally affects the α parameters computed when both (w

−1, c, w) and (w
−1, c, ∗)

events (∗ stands for any class) occur just once or a very few times. With the
purpose of keeping the approach very simple, the experiments here reported
considered for the selection criterion just the condition #(w

−1,c,w) = 1. This
selection criterion leads to a very simple implementation and has the poten-
tial to be effective enough, mainly for the purpose of enlighten this approach.
It is important to stress that although this selection method demands only
observing the specific training data, later is intended to consider other in-
formation sources, or cues.

Now emerges the question of how to use the sentences from PBL a (the
B data set) to improve the selected parameters subset. Often, the adap-
tation problem is put in terms of combining somehow two existing models,
one trained with the A-data and the other trained with the B-data. An-
other possibility, also quite common, is based on the idea of combining the
knowledge associated to both models (each one possibly existing only vir-
tually) at the frequency count level, rather than at the model level. This
second approach, that in general implementations has been associated with
the MAP training criterion (and has been referred as MAP estimation), was
chosen in these experiments. Three main arguments can be aligned favoring
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this choice: 1) the interesting efficiency that has been reported (comparing
to common approaches, such as those based on the linear interpolation of
models); 2) the suitability of this method to this concrete strategy of selec-
tive adaptation, in terms of the parameters set (that is, becomes relatively
easy to adjust only a subset of the parameters set using the new data); 3)
and finally (this is an argument that has been emphasized to justify the
performance of this approach), the subjacent MAP criterion establishes a
framework allowing a ”more principled way of combining LM information”
comparing, for instance, with the linear interpolation of models isolated
trained under the ML criterion.

In terms of the implementation of this approach, the results that are go-
ing to be presented were obtained using a very simple formula to adjust the
selected α parameters (in the upper branch of the equation 18). Accord-
ing to previous explanation, it was decided to adapt only the parameters
corresponding to sequences (w

−1, c, w) occurring just once in ABCP a (the
A-data) and that also occur at least one time (using of some arbitrariety)
in the PBL a sentences (the B-data), that is, in the equation 18 is used the
formula

α(w
−1, c, w) =

{
αA(w−1, c, w) if NA > 1 or NB = 0
αA+B(w−1, c, w) else.

(19)

Each αA quantity results from the respective relative frequency, based on
the ABCP a data, and the Witten-Bell discount formula effect. And each
αA+B value results from a linear combination of the respective relative fre-
quencies based on both data sets (no optimization weighting was performed
for the baseline results) and is also affected by the Witten-Bell discounts.
Such as it can be observed in the code (in the Appendix E are given the
indications to have access to those files), the counts corresponding to the
B-data are submitted to the logarithm transform, in order to compress and
smooth somewhat the data (recall that the B-data is between two and three
magnitude orders larger than the A-data), before the linear combination
step is performed.

Table 19 presents the perplexity estimates on the ABCP b data, relative
to the model in equation 17, considering two versions of the P (w|w

−1, c):
the baseline version, trained with the ABCP a data; and the adapted ver-
sion, corresponding to train with the α parameters adjusted according to
the equation 19. Several tests were performed in order to get more confi-
dence in that the PP decrease effectively results of the extraction and use of
knowledge encoded in the PBL a data. Replacing the PBL a data by small
constant values, or by small random numbers (from an uniform distribution)
added to the constant, always was verified the increase of the PP indicator.
Besides, changing along reasonable ranges several parameters (not visible in
the formula expressed in the equation 19) that allow to weight differently
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P (w|w
−1, c) Perplexity (decrease)

non-adapted 251.50 (baseline)

adapted 247.80 (1.47%rel)

Table 19: Perplexity estimates, on the ABCP b data, of the LM correspond-
ing to the equation 17, for the baseline version of P (w|w

−1, c) and for the
adapted version.

the ABCP a and the PBL a influence, or that impose different levels at the
Witten-Bell discount, always led to some reduction in the PP.

The perplexity reduction is small, only 1.47%rel.. Nevertheless, it is
perfectly reasonable to expect that the gain could be substantially larger
if some conditions could be verified. First of all, obviously if the PBL a
data set presented linguistic characteristics closer to those existing in the
ABCP a data, then it would result much larger gains. This data mismatch,
already emphasized above, is surely one of the main causes of the poor gain
of the adaptation process. Another factor is related to the crudeness of the
method used on selecting the weak parameters in the initial model. Such as
it was already noted, intentionally a simplistic approach was followed for the
selection step. And the combination formula is quite crude too, existing sev-
eral possibilities to try sensible improvements. Besides, no optimization was
performed in that formula, for instance weighting differently the ABCP a
and the PBL a influences.

Figure 8 gives some intuition on the demanding task that is posed when
trying to robust the α parameters, corresponding to the train with the
ABCP a dataset, using, according to the proposed manner, the counts from
the PBL a dataset. The coordinates of each point in the graphic are given
by the number of occurrences of the respective sequence (w

−1, c, w) in the
ABCP a data (abcissas) and in the PBL a data (ordinates). According to
equation 19, the data corresponding to the points in the leftmost ”column”
(with Count in ABCP a = 1) is specially relevant (for each point, the re-
spective value appears in the numerator of the formula that computes the
relative frequencies), when compared with the remaining points (the corre-
sponding values are eventually ”summed” in the denominator and so have
a smoothed influence). And this ”column” shows (although not revealing
all about the distribution) that the occurrences of the (w

−1, c, w) events,
which numbers in the PBL a data spread along more than four magnitude
orders, are crunched into an unique occurrence in the case of the ABCP a
data. Essentially, it is hoped that the distribution of all PBL a data, and
in particular that corresponding to the ”column” at left, is more close to
the applications real underlying distribution than the ”relatively uniform”
distribution, solely based on ABCP a.

Among other aspects revealed in the graphic, is very curious (though
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Figure 8: Plot of the counts of the (w
−1, c, w) occurrences in ABCP a versus

the counts in PBL a.

somewhat frustrating) that some correlation between the counts in both
sets becomes clear (even paying attention to the fact that log-scales are
used) only when the counts in the ABCP data are higher.

In the Appendix E are given the necessary indications to have access to
the code that was used to run the experiments here reported.

The main conclusion at this point is that the designed approach is effi-
cient in the sense that is able to decrease the PP indicator in an independent
data set. Follows that several limitations of the approach in the selection and
adjusting steps, or at the designing and implementation levels, were iden-
tified, existing potential for substantial improvement (already exist some
planning on these direction).

5 Future work

Several suggestions exist to proceed with this work. Some are more oriented
to development issues and other are clearly oriented to research.

The following development-nature suggestions can be presented:

• try to implement on-line the parts-of-speech tagger that has been used
(or other, eventually);

• improve automatically, using known procedures and the appropriate
acoustic materials, the existing phonemic transcription of the words
in the vocabulary (recall that the lexicons were obtained manually);
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• improve automatically, following a similar approach based on the re-
spective visual materials and, if possible, using a reliable syllabification
tool, the existing visyllabic lexicon (recall that the LM2 LEX VSL was
build based on the LM1 LEX VSL and not accounting for the visual
realizations);

• improve the gender and number annotations, in the case of pursuing
work in ”hybrid grammars” (if confirms the perception that large im-
perfections exist, for sure that improvement would reflect greatly in
the results);

• try to optimize parts of the code (C-language) which speed is more
critical (in many cases, that was not a concern);

• get skills using LM tools other than the CMU-Cambridge LM-Toolkit
(in particular, a brief incursion into the IRST LM Toolkit10 impressed
favorably).

In terms of research work, for the time being three main topics seem par-
ticularly attractive. They are related to work already initiated and reported
in the Sections 4.3 and 4.4.

One of these topics, that is related with the LM HG hybrid grammars, so
addressing the problem of modeling linguistic knowledge beyond the words
sequences statistics (in the case of the standard ngrams), certainly deserves
additional research effort to:

• try improving the structure (eventually experimenting automatic struc-
ture learning techniques) and implementation aspects (for instance
considering different parts-of-speech categories) of the model that uses
jointly the POS and the gender and number inflection categories (there
are a few ideas that could be tested, some quite easily though possibly
bringing relatively modest gains);

• try adding knowledge to the model from other linguistic levels (for
sure, semantic knowledge would be a candidate to allow substantial
gains, even if the preliminary experiments had to be quite limited).

Another research topic here suggested addresses the language modeling
robustness problem, in the perspective of the approach presented in the
Section 4.4. To pursue that preliminary work, these two research lines could
be followed:

• try designing techniques that could use applications prior knowledge
and cues exhibited during the LM operation to select ”candidates” to
the weak parameters subset (for instance, in the used model, not nec-
essarily implemented according to the equation 18, using approapriate

10http://hlt.fbk.eu/en/irstlm
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heuristics combining prior knowledge with on-line scores on the occur-
rence of specific linguistic events, associated to variables in P (w|w

−1, c),
to get cues about potentially less robust parameter sets) 11;

• try designing efficient strategies and techniques to adjust only the se-
lected parameters using de larger, though possibly with quite different
linguistic characteristics, data (there are several ideas that could be
experimented, in the particular case of the P (w|w

−1, c) model).

Still regarding to the robustness, the third suggestion addresses the prob-
lem this time following the smoothing approach. In spite of the very super-
ficial work referred in the Section 4.3.4, and also considering the profusion
of specific existing techniques, there is the conviction that new efficient ap-
proaches can be developed. In particular, interesting research opportunities
apparently exist, considering appropriate linguistic knowledge related to the
application, in the smoothing approach framework (for instance, such simple
ideas as try using efficiently knowledge related with the variable c, in the
model P (w|w

−1, c)), to regulate the discount levels.

6 The conclusions

One of the main goals of this work, consisting of building the LM modules for
the ABCP1 speech recognizer, was fully achieved. For most of the modules
several versions are available. The following lexicons are ready to use jointly
with the ABCP CP1 corpus:

• LM1 LEX v1 - single-pronunciation; phonetically based, not consider-
ing the phonetic context; with 7 599 entries; standard linear lexicon,
to use in pass-1 (decoder);

• LM1 LEX v2 - similar to LM1 LEX v1 with the difference of using a
lexical tree structure;

• LM2 LEX VSL - single-pronunciation; visyllabicaly based, not consid-
ering the visual context; with approximately 642 entries; linear lexicon,
to use in pass-2 (decoder);

And in respect to the grammars, for the ABCP CP1 corpus are actually
available:

• LM1 WP - word-pair, with 7K vocabulary;

• LM1 1G - unigram for the same text and vocabulary than LM1 WP;

11This initial step of the approach presented in the Section 4.4 was simplified in the
experiments carried out, just considering the knowledge component.
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• LM2 2G v1 to LM2 2G v6 - bigrams; with different versions, chang-
ing the text (subset used on training), the vocabulary, the smoothing
method or the size; arpa format;

• LM2 3G v1 and LM2 3G v2 - trigrams for ABCP CP1 corpus; with
two versions changing the smoothing method; arpa format.

Globally, very positive results were obtained for another important goal,
concerning the problem of encoding efficiently into the grammars knowl-
edge related to the morpho-syntactic categories assigned to the words in
the sentence, eventually considering knowledge on the concordance of gen-
der, or number, inflections. Several probabilistic models were developed,
that can be integrate into the ABCP1 recognizer if running off-line simula-
tions. The code that was developed is available, such as the following two
hybrid-grammars (with the sub-modules in the arpa format):

• LM2 HG v1 - for the ABCP CP1 corpus, based on the proposed model
(equation 9);

• LM2 HG v2 - for the PUBLICO corpus, based on approximation (equa-
tion 17) to the proposed model (and with three different sub-versions);

Approximately 17%rel decrease in the perplexity estimate in an independent
set is obtained with LM2 HG v2, taking as reference the result obtained with
a baseline grammar. The work done allows to conclude that this topic offers
appealing research opportunity.

Interesting results were also achieved with an approach that was de-
signed, and partialy implemented, to the problem of reducing the effects of
the lack of specific raining data. Using parsimoniously a large estra dataset,
trying to adjust only some of the presumably less robust parameters, even
in a very unfavorable context mainly due to the large mismatch between the
original LM and that extra data, it was possible to reduce the perplexity
in 1.47%rel. Though modest in absolute terms, that result suggests this
approach can be quite effective and advantageous in certain applications
and contexts. Here were reported just the preliminary experiments already
executed, and a much larger effort must be made to develop the idea. The
code that was used to get these results is available (indications in the Ap-
pendix E).

Another initial goal was to study different approaches to the problem
of using efficiently linguistic knowledge (for instance, based on POS tags)
in the context of the ngrams smoothing. The work done with that objectif
did not give the pretended results, yet. By the other side nothing was
found that could disencourage to continue pursuing this objectif, on the
contrary. By the way, it worth to mention the design and implementation
of a simple (though quite easily allowing extensions to account for possible
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new dependencies) variation based on the Witten-Bell discount technique,
allowing to establish different discount levels.

It must be also referred the creation of a text corpus, ABCP CP1, that
although being small presents some interesting characteristics. In particular,
this corpus has a suitable linguistic content, according to the speech recog-
nition tasks that are intended to address, and integrates acoustic and visual
annotation information on the respective audio-visual captured materials.

The following innovative aspects, for the best of the author’s knowledge,
can be assigned to the work here reported:

• the definition of the visyllables as the sub-word units at the basis of the
recognizers visual model, offering an interesting compromise between
the precision and the size of that model.

• the use of the gender and number inflections, jointly with standard
ngrams already combined with parts-of-speech categorization knowl-
edge, leading to substantial improvement in the modeling ability;

• the idea of adapting a non-robust existing model, based 1) on prior
knowledge and operation cues, used to identify some subset of its weak
parameters, 2) and on the existence of a relatively large dataset, which
linguistic content possibly presents a large mismatch in relation to the
existing model, 3) so that, then, an appropriate strategy could be
implemented to adjust the selected parameters of the original model.

After the many experiments and readings along the work here reported,
concerning to the author’s interests in language modeling, in the context
of the automatic speech recognition, the following achievements must be
emphasized:

• the acquisition of know-how on many different tasks, in particular
those related with building LM modules using existing tools;

• the insight gained on many topics (in general, the initial knowledge was
very superficial), as distinct as those related to the models robustness
(with acquisition of good intuition in this particular topic) or the use of
less-conventional linguistic knowledge (with the intention to continue
studying this subject).
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tográfico da Ĺıngua Portuguesa. Editorial Caminho, Jan/2009.

[P. Ladefoged (1994)] P. Ladefoged. A course in phonetics, 3rded. New
York: H. B. Javanovich, 1994.

[S. Russel (2004)] Stuart Russel, Peter Norvig. Artificial Intelligence - A
Modern Approach. Elsevier, 2004.

[J.-P. Tremblay (1984)] Jean-Paul Tremblay, Paul G. Sorenson. An Intro-
duction to Data Structures with Applications. McGraw-Hill Intl. Edi-
tions,1984.

[H. Peng (2005)] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature
Selection Based on Mutual Information: Criteria of Max-Dependency,
Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol.27, No.8, August,2005.

[C. Ding (2005)] Chris Ding, and Hanchuan Peng. Minimal Redundancy
Feature from Microarray Gene Expression Data. Journal of Bioinfor-
matics and Computational Biology, Vol.3, No.2, pp.185-205,2005.

[M. Federico (2010)] Marcello Federico. Tutorial on Language Models.
FBK-irst, Trento, Italy, 2010.

[Joshua Goodman (2002)] Joshua Goodman. The State of The Art in Lan-
guage Modeling. In presentation at the 6th Conf. of the Association for
Machine Translation in the Americas (AMTA), Tiburon, CA, 2002.

[S. Chen (1996)] Stanley F. Chen. Building Probabilistic Models for Natural
Language. PhD thesis, Harvard U., 1996.

42



[Katrin Kirchhoff (2008)] K. Kirchhoff, J. Bilmes, and K. Duh. Factored
Language Models Tutorial, Tech. Report UWEETR-2007-0003, Dept.
of EE, U. Washington, 2007.

[Dan Jurafsky (xx)] Dan Jurafsky. Language Modeling, Lecture 11 of his
course on ”Speech Recognition and Synthesis” at Stanford.

[C. V. Gasperin (2001)] Caroline V. Gasperin, and Vera L. Lima. Funda-
mentos do Processamento Estat́ıstico da Linguagem Natural. Tech.
Report, faculdade de Informática - PUCRS, Brazil, 2001.
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A The IPA/ABCP symbols set mapping

IPA ABCP IPA ABCP
a a p p
5 6 d d
5̃ 6∼ t t
E E g g
Ẽ y k k
e e m m
ẽ e∼ n n
9 @ ñ J
i i v v

ĩ i∼ f f
O O z z
o o s s
õ o∼ Z Z
u u S S
ũ u∼ L L
j j l l
w w ë h
w̃ w∼ R r
b b R R

Table 20: Conversion table between the IPA and the ABCP symbols sets.
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B The ABCP CP1 text corpus in brief

This small text corpus is associated to the ABCP-DB1 dataset, that was
built to provide the audio-visual speech, and related text materials, needed
to develop the ABCP1 recognizer. That text material comprises 8 524
daclarative sentences in the Portuguese language, with quite general linguis-
tic scope, that were collected from a Brazilian source. The most notorious
lexical differences detected, respecting to the european Portuguese, were
corrected. Annotation information was extracted from that material using
a morpho-syntactic analyser that is available in the Web (see Appendix D).
More detailed information about this corpus can be found in the technical
report[V. Pera (2011a)] respecting the ABCP-DB1.

The sentences of ABCP CP1 are grouped in the set that in this report
is denoted as ABCP, which was splet into two disjoint subsets, the ABCP a
and the ABCP b. Table 21 has information concerning the size, both in
terms of sentences or words, of these (sub)sets.

Number of ... ABCP ABCP a ABCP b

sentences 8 524 6 524 2 000

words 78 723 59 479 19 244

different words 7 599 6 561 3 509

Table 21: Number of sentences and number of words and different words in
the established sets.
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C The CETEMPublico text corpus in brief

The text corpus referenced in this report by the name Publico consists of a
set with more than 2 million sentences, selected from the CETEMPublico
corpus, and annotation information extracted from it using a morpho-syntactic
analyser. The CETEMPublico (Corpus de Extractos de Textos Electronicos
MCT/Publico) is available in the Web address
http://www.linguateca.pt/CETEMPublico/, from Linguateca. Contains
approximately 180 M words, in the European Portuguese language, based
on news and other journalistic text materials.

The sentences selected have in common the fact that all are declarative
and, following an ad-hoc approach, were eliminated those presenting some
sorts of peculiarities (such as non-portuguese words, acronyms, etc.). These
sentences are grouped in the set denoted as PBL and three disjoint subsets
were extracted from it: PBL a, PBL b and PBL c. Table 22 contains some
figures respecting these sets.

Set name No. sentences No. words

PBL 2 307 209 43 411 150

PBL a 1 615 047 32 007 253

PBL b 461 422 9 136 408

PBL c 230 720 4 574 198

Table 22: Number of sentences and number of words in the established sets.

Table 23 presents several vocabularies that were defined and the re-
spective sizes: VCB all contains all the different words in PBL; VCB 10+
contains all the words in PBL that occur at least 10 times; VCB 10+ ABCP
contains all the words in VCB 10+ that also exist in the ABCP sentences;
and VCB 20K contains the 20K most frequent words in PBL.

Vocabulary Size

VCB all 224 598

VCB 10+ 57 175

VCB 10+ ABCP 5711

VCB 20K 20 000

Table 23: Size of different vocabularies associated to PBL.

The annotation information extracted from each (sub)set, using a morpho-
syntactic analyser available in the Web (see Appendix D) is also available.
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D The morpho-syntactic analyser and tagset

The morpho-syntactic analyser that was used is available in the Web ad-
dresses
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

DecisionTreeTagger.html

and
http://gramatica.usc.es/∼gamallo/.
In this last site can be found a paremeters set for the portuguese language,
allowing promptly running the tagger. In both sites can be found the code
and resources, or the respective links, needed to build other parameters sets,
eventually considering different tagsets.

Tag Comment

ADJ gender & number

ADV

CARD

CONJ

CONJSUB que (clauses cojunction)

DET gender & number

I interjection

NOM gender& number

P gender & number ; pronoun

PR relative pronoun

PRP preposition

V number

P+P gender & number

PRP+ADV

PRP+DET gender & number

PRP+P gender & number

X (non-defined)

Table 24: PoS tags and related information.

The tagger is described in the articles ”Probabilistic Part-of-Speech Tag-
ging Using Decision Trees”[H. Schmid(1994)] and ”Improvments in Part-of-
Speech Tagging with and Application to German”[H. Schmid(1995)].
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E The ABCP1 Language Model filesystem

The following files, containing the available resources of the ABCP1 language
model (’tar’ files contain code), can be found in the Web address
http://speech-rec-vcp.com/abcp1/lang-model/

---------------------------

LM1_LEX/lex-phn.dat

/lex-phn-c.tar

LM2_LEX_VSL/lex-vsl.dat

/lex-vsl-c.tar

LM1_WP/word-pair.dat

/word-pair-c.tar

LM1_1G/1gram.dat

/1gram-c.tar

LM2_2G/2gram-v1.arpa

/2gram-v2.arpa

/2gram-v3.arpa

/2gram-v4.arpa

/2gram-v5.arpa

/2gram-v6.arpa

LM2_3G/3gram-v1.arpa

/3gram-v2.arpa

LM2_HG/hyb-gram.tar

LM2_ADPT/adapt.tar

---------------------------
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